首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently the Balanced method was introduced as a class of quasi-implicit methods for solving stiff stochastic differential equations. We examine asymptotic and mean-square stability for several implementations of the Balanced method and give a generalized result for the mean-square stability region of any Balanced method. We also investigate the optimal implementation of the Balanced method with respect to strong convergence. AMS subject classification (2000) 65C30, 65L07  相似文献   

2.
In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We theoretically prove that the schemes have second-order convergence rate.To demonstrate the effectiveness and the second-order convergence rate,numerical tests are given.  相似文献   

3.
Abstract

In this article numerical methods for solving hybrid stochastic differential systems of Itô-type are developed by piecewise application of numerical methods for SDEs. We prove a convergence result if the corresponding method for SDEs is numerically stable with uniform convergence in the mean square sense. The Euler and Runge–Kutta methods for hybrid stochastic differential equations are specifically described and the order of the error is given for the Euler method. A numerical example is given to illustrate the theory.  相似文献   

4.
In this paper, by composite previous-current-step idea, we propose two numerical schemes for solving the Itô stochastic differential systems. Our approaches, which are based on the Euler–Maruyama method, solve stochastic differential systems with strong sense. The mean-square convergence theory of these methods are analyzed under the Lipschitz and linear growth conditions. The accuracy and efficiency of the proposed numerical methods are examined by linear and nonlinear stochastic differential equations.  相似文献   

5.
In this paper we construct implicit stochastic Runge–Kutta (SRK) methods for solving stochastic differential equations of Stratonovich type. Instead of using the increment of a Wiener process, modified random variables are used. We give convergence conditions of the SRK methods with these modified random variables. In particular, the truncated random variable is used. We present a two-stage stiffly accurate diagonal implicit SRK (SADISRK2) method with strong order 1.0 which has better numerical behaviour than extant methods. We also construct a five-stage diagonal implicit SRK method and a six-stage stiffly accurate diagonal implicit SRK method with strong order 1.5. The mean-square and asymptotic stability properties of the trapezoidal method and the SADISRK2 method are analysed and compared with an explicit method and a semi-implicit method. Numerical results are reported for confirming convergence properties and for comparing the numerical behaviour of these methods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper a family of fully implicit Milstein methods are introduced for solving stiff stochastic differential equations (SDEs). It is proved that the methods are convergent with strong order 1.0 for a class of SDEs. For a linear scalar test equation with multiplicative noise terms, mean-square and almost sure asymptotic stability of the methods are also investigated. We combine analytical and numerical techniques to get insights into the stability properties. The fully implicit methods are shown to be superior to those of the corresponding semi-implicit methods in term of stability property. Finally, numerical results are reported to illustrate the convergence and stability results.  相似文献   

7.
The aim of this paper is to derive a numerical scheme for solving stochastic differential equations (SDEs) via Wong-Zakai approximation. One of the most important methods for solving SDEs is Milstein method, but this method is not so popular because the cost of simulating the double stochastic integrals is high. For overcoming this complexity, we present an implicit Milstein scheme based on Wong-Zakai approximation by approximating the Brownian motion with its truncated Haar expansion. The main advantages of this method lie in the fact that it preserves the convergence order and also stability region of the Milstein method while its simulation is much easier than Milstein scheme. We show the convergence rate of the method by some numerical examples.  相似文献   

8.
We study a numerical method for solving a system of Volterra-renewal integral equations with space fluxes, that represents the Chapman-Kolmogorov equation for a class of piecewise deterministic stochastic processes. The solution of this equation is related to the time dependent distribution function of the stochastic process and it is a non-negative and non-decreasing function of the space. Based on the Bernstein polynomials, we build up and prove a non-negative and non-decreasing numerical method to solve that equation, with quadratic convergence order in space.  相似文献   

9.
The paper deals with the numerical treatment of stochastic differential-algebraic equations of index one with a scalar driving Wiener process. Therefore, a particularly customized stochastic Runge-Kutta method is introduced. Order conditions for convergence with order 1.0 in the mean-square sense are calculated and coefficients for some schemes are presented. The proposed schemes are stiffly accurate and applicable to nonlinear stochastic differential-algebraic equations. As an advantage they do not require the calculation of any pseudo-inverses or projectors. Further, the mean-square stability of the proposed schemes is analyzed and simulation results are presented bringing out their good performance.  相似文献   

10.
We consider linear multi-step methods for stochastic differential equations and present a theorem ensuring their numerical stability and strong convergence. We use this to study the properties of two-step schemes for stochastic differential equations with small noise. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. Numerical approximation schemes are invaluable tools for exploring their properties. In this paper, we introduce a class of stochastic age-dependent (vintage) capital system with Poisson jumps. We also give the discrete approximate solution with an implicit Euler scheme in time discretization. Using Gronwall’s lemma and Barkholder-Davis-Gundy’s inequality, some criteria are obtained for the exponential stability of numerical solutions to the stochastic age-dependent capital system with Poisson jumps. It is proved that the numerical approximation solutions converge to the analytic solutions of the equations under the given conditions, where information on the order of approximation is provided. These error bounds imply strong convergence as the timestep tends to zero. A numerical example is used to illustrate the theoretical results.  相似文献   

12.
This work is concerned with numerical schemes for stochastic optimal control problems (SOCPs) by means of forward backward stochastic differential equations (FBSDEs). We first convert the stochastic optimal control problem into an equivalent stochastic optimality system of FBSDEs. Then we design an efficient second order FBSDE solver and an quasi-Newton type optimization solver for the resulting system. It is noticed that our approach admits the second order rate of convergence even when the state equation is approximated by the Euler scheme. Several numerical examples are presented to illustrate the effectiveness and the accuracy of the proposed numerical schemes.  相似文献   

13.
朱梦姣  王文强 《计算数学》2021,43(1):87-109
论文首先证明了非线性随机分数阶微分方程解的存在唯一性, 然后构造了数值求解该方程的Euler 方法, 并证明了当方程满足一定约束条件时, 该方法是弱收敛的. 特别地, 当分数阶α=0时, 该方程退化为非线性随机微分方程, 所获结论与现有文献中的相关结论是一致的; 当α ≠ 0, 且初值条件为齐次时, 所获结论可视为现有文献中线性随机分数阶微分方程情形的推广和改进. 随后, 文末的数值试验验证了所获理论结果的正确性.  相似文献   

14.
This article proposes and analyzes explicit and easily implementable temporal numerical approximation schemes for additive noise-driven stochastic partial differential equations (SPDEs) with polynomial nonlinearities such as, e.g., stochastic Ginzburg–Landauequations. We prove essentially sharp strong convergence rates for the considered approximation schemes. Our analysis is carried out for abstract stochastic evolution equations on separable Banach and Hilbert spaces including the above mentioned SPDEs as special cases. We also illustrate our strong convergence rate results by means of a numerical simulation in Matlab.  相似文献   

15.
This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.  相似文献   

16.
Random ordinary differential equations (RODEs) are ordinary differential equations which contain a stochastic process in their vector fields. They can be analyzed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable. Traditional numerical schemes for ordinary differential equations thus do not achieve their usual order of convergence when applied to RODEs. Nevertheless, deterministic calculus can still be used to derive higher order numerical schemes for RODEs by means of a new kind of integral Taylor expansion. The theory is developed systematically here, applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes and compared with other numerical schemes for RODEs in the literature.  相似文献   

17.
We present some iterative methods of different convergence orders for solving systems of nonlinear equations. Their computational complexities are studies. Then, we introduce the method of finite difference for solving stochastic differential equations of Itô-type. Subsequently, our multi-step iterative schemes are employed in this procedure. Several experiments are finally taken into account to show that the presented approach and methods work well.  相似文献   

18.
The Milstein scheme is the simplest nontrivial numerical scheme for stochastic differential equations with a strong order of convergence one. The scheme has been extended to the stochastic delay differential equations but the analysis of the convergence is technically complicated due to anticipative integrals in the remainder terms. This article employs an elementary method to derive the Milstein scheme and its first order strong rate of convergence for stochastic delay differential equations.  相似文献   

19.
The numerical solution of stochastic partial differential equations (SPDEs) is at a stage of development roughly similar to that of stochastic ordinary differential equations (SODEs) in the 1970s, when stochastic Taylor schemes based on an iterated application of the Itô formula were introduced and used to derive higher order numerical schemes. An Itô formula in the generality needed for Taylor expansions of the solution of a SPDE is however not available. Nevertheless, it was shown recently how stochastic Taylor expansions for the solution of a SPDE can be derived from the mild form representation of the SPDE, which avoid the need of an Itô formula. A brief review of the literature is given here and the new stochastic Taylor expansions are discussed along with numerical schemes that are based on them. Both strong and pathwise convergence are considered.  相似文献   

20.
We analyze a class of numerical schemes proposed [26] for stochastic differential equations with multiple time scales. Both advective and diffusive time scales are considered. Weak as well as strong convergence theorems are proven. Most of our results are optimal. They in turn allow us to provide a thorough discussion on the efficiency as well as optimal strategy for the method. © 2005 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号