首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, we study the largest Laplacian spectral radius of the bipartite graphs with n vertices and k cut edges and the bicyclic bipartite graphs, respectively. Identifying the center of a star K1,k and one vertex of degree n of Km,n, we denote by the resulting graph. We show that the graph (1?k?n-4) is the unique graph with the largest Laplacian spectral radius among the bipartite graphs with n vertices and k cut edges, and (n?7) is the unique graph with the largest Laplacian spectral radius among all the bicyclic bipartite graphs.  相似文献   

2.
For a simple graph G, the energy E(G) is defined as the sum of the absolute values of all the eigenvalues of its adjacency matrix A(G). Let n,m, respectively, be the number of vertices and edges of G. One well-known inequality is that , where λ1 is the spectral radius. If G is k-regular, we have . Denote . Balakrishnan [R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295] proved that for each ?>0, there exist infinitely many n for each of which there exists a k-regular graph G of order n with k<n-1 and , and proposed an open problem that, given a positive integer n?3, and ?>0, does there exist a k-regular graph G of order n such that . In this paper, we show that for each ?>0, there exist infinitely many such n that . Moreover, we construct another class of simpler graphs which also supports the first assertion that .  相似文献   

3.
The study of limit points of eigenvalues of adjacency matrices of graphs was initiated by Hoffman [A.J. Hoffman, On limit points of spectral radii of non-negative symmetric integral matrices, in: Y. Alavi et al. (Eds.), Lecture Notes Math., vol. 303, Springer-Verlag, Berlin, Heidelberg, New York, 1972, pp. 165-172]. There he described all of the limit points of the largest eigenvalue of adjacency matrices of graphs that are no more than . In this paper, we investigate limit points of Laplacian spectral radii of graphs. The result is obtained: Let , β0=1 and be the largest positive root of
  相似文献   

4.
Let G be a graph on n vertices, and let λ1,λ2,…,λn be its eigenvalues. The Estrada index is defined as . We determine the unique tree with maximum Estrada index among the trees on n vertices with given matching number, and the unique tree with maximum Estrada index among the trees on n vertices with fixed diameter. For , we also determine the tree with maximum Estrada index among the trees on n vertices with maximum degree Δ. It gives a partial solution to the conjecture proposed by Ili? and Stevanovi? in Ref. [14].  相似文献   

5.
The Estrada index of a graph G is defined as , where λ1,λ2,…,λn are the eigenvalues of G. The Laplacian Estrada index of a graph G is defined as , where μ1,μ2,…,μn are the Laplacian eigenvalues of G. An edge grafting operation on a graph moves a pendent edge between two pendent paths. We study the change of Estrada index of graph under edge grafting operation between two pendent paths at two adjacent vertices. As the application, we give the result on the change of Laplacian Estrada index of bipartite graph under edge grafting operation between two pendent paths at the same vertex. We also determine the unique tree with minimum Laplacian Estrada index among the set of trees with given maximum degree, and the unique trees with maximum Laplacian Estrada indices among the set of trees with given diameter, number of pendent vertices, matching number, independence number and domination number, respectively.  相似文献   

6.
Let Δ(T) and μ(T) denote the maximum degree and the Laplacian spectral radius of a tree T, respectively. Let Tn be the set of trees on n vertices, and . In this paper, we determine the two trees which take the first two largest values of μ(T) of the trees T in when . And among the trees in , the tree which alone minimizes the Laplacian spectral radius is characterized. We also prove that for two trees T1 and T2 in , if Δ(T1)>Δ(T2) and , then μ(T1)>μ(T2). As an application of these results, we give a general approach about extending the known ordering of trees in Tn by their Laplacian spectral radii.  相似文献   

7.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. It is known that connected graphs G that maximize the signless Laplacian spectral radius ρ(Q(G)) over all connected graphs with given numbers of vertices and edges are (degree) maximal. For a maximal graph G with n vertices and r distinct vertex degrees δr>δr-1>?>δ1, it is proved that ρ(Q(G))<ρ(Q(H)) for some maximal graph H with n+1 (respectively, n) vertices and the same number of edges as G if either G has precisely two dominating vertices or there exists an integer such that δi+δr+1-i?n+1 (respectively, δi+δr+1-i?δl+δr-l+1). Graphs that maximize ρ(Q(G)) over the class of graphs with m edges and m-k vertices, for k=0,1,2,3, are completely determined.  相似文献   

8.
In this paper, we identify within connected graphs of order n and size n+k (with and ) the graphs whose least eigenvalue is minimal. It is also observed that the same graphs have the largest spectral spread if n is large enough.  相似文献   

9.
We show that the spectral radius ρ(D) of a digraph D with n vertices and c2 closed walks of length 2 satisfies Moreover, equality occurs if and only if D is the symmetric digraph associated to a -regular graph, plus some arcs that do not belong to cycles. As an application of this result, we construct new sharp upper bounds for the low energy of a digraph, which extends Koolen and Moulton bounds of the energy to digraphs.  相似文献   

10.
A permutation graph is a simple graph associated with a permutation. Let cn be the number of connected permutation graphs on n vertices. Then the sequence {cn} satisfies an interesting recurrence relation such that it provides partitions of n! as . We also see that, if uniformly chosen at random, asymptotically almost all permutation graphs are connected.  相似文献   

11.
The energy of a simple graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Denote by Cn the cycle, and the unicyclic graph obtained by connecting a vertex of C6 with a leaf of Pn-6. Caporossi et al. conjectured that the unicyclic graph with maximal energy is for n=8,12,14 and n16. In Hou et al. (2002) [Y. Hou, I. Gutman, C. Woo, Unicyclic graphs with maximal energy, Linear Algebra Appl. 356 (2002) 27-36], the authors proved that is maximal within the class of the unicyclic bipartite n-vertex graphs differing from Cn. And they also claimed that the energies of Cn and is quasi-order incomparable and left this as an open problem. In this paper, by utilizing the Coulson integral formula and some knowledge of real analysis, especially by employing certain combinatorial techniques, we show that the energy of is greater than that of Cn for n=8,12,14 and n16, which completely solves this open problem and partially solves the above conjecture.  相似文献   

12.
The energy of a simple graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let Cn denote the cycle of order n and the graph obtained from joining two cycles C6 by a path Pn-12 with its two leaves. Let Bn denote the class of all bipartite bicyclic graphs but not the graph Ra,b, which is obtained from joining two cycles Ca and Cb (a,b10 and ) by an edge. In [I. Gutman, D. Vidovi?, Quest for molecular graphs with maximal energy: a computer experiment, J. Chem. Inf. Sci. 41(2001) 1002-1005], Gutman and Vidovi? conjectured that the bicyclic graph with maximal energy is , for n=14 and n16. In [X. Li, J. Zhang, On bicyclic graphs with maximal energy, Linear Algebra Appl. 427(2007) 87-98], Li and Zhang showed that the conjecture is true for graphs in the class Bn. However, they could not determine which of the two graphs Ra,b and has the maximal value of energy. In [B. Furtula, S. Radenkovi?, I. Gutman, Bicyclic molecular graphs with the greatest energy, J. Serb. Chem. Soc. 73(4)(2008) 431-433], numerical computations up to a+b=50 were reported, supporting the conjecture. So, it is still necessary to have a mathematical proof to this conjecture. This paper is to show that the energy of is larger than that of Ra,b, which proves the conjecture for bipartite bicyclic graphs. For non-bipartite bicyclic graphs, the conjecture is still open.  相似文献   

13.
Let G be a graph of sufficiently large order n, and let the largest eigenvalue μ(G) of its adjacency matrix satisfies . Then G contains a cycle of length t for every t?n/320This condition is sharp: the complete bipartite graph T2(n) with parts of size n/2 and n/2 contains no odd cycles and its largest eigenvalue is equal to .This condition is stable: if μ(G) is close to and G fails to contain a cycle of length t for some t?n/321, then G resembles T2(n).  相似文献   

14.
Let be the set of the complements of trees of order n. In this paper, we characterize the unique graph whose least eigenvalue attains the minimum among all graphs in .  相似文献   

15.
Bc(G) denotes the cyclic bandwidth of graph G. In this paper, we obtain the maximum cyclic bandwidth of graphs of order p with adding an edge as follows:
  相似文献   

16.
Min Chen 《Discrete Mathematics》2010,310(20):2705-2713
Let G be a graph and let c: be an assignment of 2-elements subsets of the set {1,…,5} to the vertices of G such that for any two adjacent vertices u and v,c(u) and c(v) are disjoint. Call such a coloring c a (5, 2)-coloring of G. A graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph.The maximum average degree of G is defined as . In this paper, we prove that every triangle-free graph with is homomorphic to the Petersen graph. In other words, such a graph is (5, 2)-colorable. Moreover, we show that the bound on the maximum average degree in our result is best possible.  相似文献   

17.
Let G be a graph and for any natural number r, denotes the minimum number of colors required for a proper edge coloring of G in which no two vertices with distance at most r are incident to edges colored with the same set of colors. In [Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626] it has been proved that for any tree T with at least three vertices, . Here we generalize this result and show that . Moreover, we show that if for any two vertices u and v with maximum degree d(u,v)?3, then . Also for any tree T with Δ(T)?3 we prove that . Finally, it is shown that for any graph G with no isolated edges, .  相似文献   

18.
For a simple graph G, let denote the complement of G relative to the complete graph and let PG(x)=det(xI-A(G)) where A(G) denotes the adjacency matrix of G. The complete product GH of two simple graphs G and H is the graph obtained from G and H by joining every vertex of G to every vertex of H. In [2]PGH(x) is represented in terms of PG, , PH and . In this paper we extend the notion of complete product of simple graphs to that of generalized complete product of matrices and obtain their characteristic polynomials.  相似文献   

19.
A function f:V(G)→{+1,0,-1} defined on the vertices of a graph G is a minus total dominating function if the sum of its function values over any open neighborhood is at least 1. The minus total domination number of G is the minimum weight of a minus total dominating function on G. By simply changing “{+1,0,-1}” in the above definition to “{+1,-1}”, we can define the signed total dominating function and the signed total domination number of G. In this paper we present a sharp lower bound on the signed total domination number for a k-partite graph, which results in a short proof of a result due to Kang et al. on the minus total domination number for a k-partite graph. We also give sharp lower bounds on and for triangle-free graphs and characterize the extremal graphs achieving these bounds.  相似文献   

20.
Spectral radius and Hamiltonicity of graphs   总被引:1,自引:0,他引:1  
Let G be a graph of order n and μ(G) be the largest eigenvalue of its adjacency matrix. Let be the complement of G.Write Kn-1+v for the complete graph on n-1 vertices together with an isolated vertex, and Kn-1+e for the complete graph on n-1 vertices with a pendent edge.We show that:If μ(G)?n-2, then G contains a Hamiltonian path unless G=Kn-1+v; if strict inequality holds, then G contains a Hamiltonian cycle unless G=Kn-1+e.If , then G contains a Hamiltonian path unless G=Kn-1+v.If , then G contains a Hamiltonian cycle unless G=Kn-1+e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号