首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppose and are arbitrary lists of positive integers. In this article, we determine necessary and sufficient conditions on M and N for the existence of a simple graph G, which admits a face 2‐colorable planar embedding in which the faces of one color have boundary lengths and the faces of the other color have boundary lengths . Such a graph is said to have a planar ‐biembedding. We also determine necessary and sufficient conditions on M and N for the existence of a simple graph G whose edge set can be partitioned into r cycles of lengths and also into t cycles of lengths . Such a graph is said to be ‐decomposable.  相似文献   

2.
If a graph G decomposes into edge‐disjoint 4‐cycles, then each vertex of G has even degree and 4 divides the number of edges in G. It is shown that these obvious necessary conditions are also sufficient when G is any simple graph having minimum degree at least , where n is the number of vertices in G. This improves the bound given by Gustavsson (PhD Thesis, University of Stockholm, 1991), who showed (as part of a more general result) sufficiency for simple graphs with minimum degree at least . On the other hand, it is known that for arbitrarily large values of n there exist simple graphs satisfying the obvious necessary conditions, having n vertices and minimum degree , but having no decomposition into edge‐disjoint 4‐cycles. We also show that if G is a bipartite simple graph with n vertices in each part, then the obvious necessary conditions for G to decompose into 4‐cycles are sufficient when G has minimum degree at least .  相似文献   

3.
Given two graphs G and H , an Hdecomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H . Let be the smallest number ? such that any graph G of order n admits an H‐decomposition with at most ? parts. Pikhurko and Sousa conjectured that for and all sufficiently large n , where denotes the maximum number of edges in a graph on n vertices not containing H as a subgraph. Their conjecture has been verified by Özkahya and Person for all edge‐critical graphs H . In this article, the conjecture is verified for the k‐fan graph. The kfan graph , denoted by , is the graph on vertices consisting of k triangles that intersect in exactly one common vertex called the center of the k‐fan.  相似文献   

4.
In this article, we study so‐called rooted packings of rooted graphs. This concept is a mutual generalization of the concepts of a vertex packing and an edge packing of a graph. A rooted graph is a pair , where G is a graph and . Two rooted graphs and are isomorphic if there is an isomorphism of the graphs G and H such that S is the image of T in this isomorphism. A rooted graph is a rooted subgraph of a rooted graph if H is a subgraph of G and . By a rooted ‐packing into a rooted graph we mean a collection of rooted subgraphs of isomorphic to such that the sets of edges are pairwise disjoint and the sets are pairwise disjoint. In this article, we concentrate on studying maximum ‐packings when H is a star. We give a complete classification with respect to the computational complexity status of the problems of finding a maximum ‐packing of a rooted graph when H is a star. The most interesting polynomial case is the case when H is the 2‐edge star and S contains the center of the star only. We prove a min–max theorem for ‐packings in this case.  相似文献   

5.
6.
§ 1 IntroductionLet V(G) and E(G) be the vertex setand the edge setof a graph G,respectively.Fori=1 ,...,p,if V(Gi) V(G) ,E(Gi)∩ E(Gj) = for i≠ j,and∪pi=1 E(Gi) =E(G) ,then wecall{ G1 ,...,GP} a decomposition of G.Let[i,j] be the integer interval including i and j.Let Knbe a complete graph with the vertex set[1 ,n] .For m disjointsubsets A1 ,...Amof[1 ,n] ,let K(A1 ,...,Am) be a complete m-partite graph having partite-sets A1 ,...,Am.If| Ai| =1 ,Ai is called a S-set;otherwi…  相似文献   

7.
The circulant G = C(n,S), where , is the graph with vertex set Zn and edge set . It is shown that for n odd, every 6‐regular connected circulant C(n, S) is decomposable into Hamilton cycles. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

8.
For k = 1 and k = 2, we prove that the obvious necessary numerical conditions for packing t pairwise edge‐disjoint k‐regular subgraphs of specified orders m1,m2,… ,mt in the complete graph of order n are also sufficient. To do so, we present an edge‐coloring technique which also yields new proofs of various known results on graph factorizations. For example, a new construction for Hamilton cycle decompositions of complete graphs is given. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 499–506, 2008  相似文献   

9.
A decomposition of a complete graph into disjoint copies of a complete bipartite graph is called a ‐design of order n. The existence problem of ‐designs has been completely solved for the graphs for , for , K2, 3 and K3, 3. In this paper, I prove that for all , if there exists a ‐design of order N, then there exists a ‐design of order n for all (mod ) and . Giving necessary direct constructions, I provide an almost complete solution for the existence problem for complete bipartite graphs with fewer than 18 edges, leaving five orders in total unsolved.  相似文献   

10.
Let k be a fixed integer at least 3. It is proved that every graph of order (2k ? 1 ? 1/k)n + O(1) contains n vertex disjoint induced subgraphs of order k such that these subgraphs are equivalent to each other and they are equivalent to one of four graphs: a clique, an independent set, a star, or the complement of a star. In particular, by substituting 3 for k, it is proved that every graph of order 14n/3 + O(1) contains n vertex disjoint induced subgraphs of order 3 such that they are equivalent to each other. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 159–166, 2007  相似文献   

11.
12.
For all integers n ≥ 5, it is shown that the graph obtained from the n‐cycle by joining vertices at distance 2 has a 2‐factorization is which one 2‐factor is a Hamilton cycle, and the other is isomorphic to any given 2‐regular graph of order n. This result is used to prove several results on 2‐factorizations of the complete graph Kn of order n. For example, it is shown that for all odd n ≥ 11, Kn has a 2‐factorization in which three of the 2‐factors are isomorphic to any three given 2‐regular graphs of order n, and the remaining 2‐factors are Hamilton cycles. For any two given 2‐regular graphs of even order n, the corresponding result is proved for the graph KnI obtained from the complete graph by removing the edges of a 1‐factor. © 2004 Wiley Periodicals, Inc.  相似文献   

13.
《Journal of Graph Theory》2018,88(3):434-448
The natural infinite analog of a (finite) Hamilton cycle is a two‐way‐infinite Hamilton path (connected spanning 2‐valent subgraph). Although it is known that every connected 2k‐valent infinite circulant graph has a two‐way‐infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge‐disjoint two‐way‐infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k‐valent connected circulant graph has a decomposition into k edge‐disjoint Hamilton cycles. We settle the problem of decomposing 2k‐valent infinite circulant graphs into k edge‐disjoint two‐way‐infinite Hamilton paths for , in many cases when , and in many other cases including where the connection set is or .  相似文献   

14.
It is shown that if K is any regular complete multipartite graph of even degree, and F is any bipartite 2‐factor of K, then there exists a factorization of K into F; except that there is no factorization of K6, 6 into F when F is the union of two disjoint 6‐cycles.  相似文献   

15.
In this article we find necessary and sufficient conditions to decompose a complete equipartite graph into cycles of uniform length, in the case that the length is both even and short relative to the number of parts. © 2010 Wiley Periodicals, Inc. J Combin Designs 19:131‐143, 2011  相似文献   

16.
17.
《Discrete Mathematics》2022,345(5):112797
If the line graph of a graph G decomposes into Hamiltonian cycles, what is G? We answer this question for decomposition into two cycles.  相似文献   

18.
Kotzig asked in 1979 what are necessary and sufficient conditions for a d‐regular simple graph to admit a decomposition into paths of length d for odd d>3. For cubic graphs, the existence of a 1‐factor is both necessary and sufficient. Even more, each 1‐factor is extendable to a decomposition of the graph into paths of length 3 where the middle edges of the paths coincide with the 1‐factor. We conjecture that existence of a 1‐factor is indeed a sufficient condition for Kotzig's problem. For general odd regular graphs, most 1‐factors appear to be extendable and we show that for the family of simple 5‐regular graphs with no cycles of length 4, all 1‐factors are extendable. However, for d>3 we found infinite families of d‐regular simple graphs with non‐extendable 1‐factors. Few authors have studied the decompositions of general regular graphs. We present examples and open problems; in particular, we conjecture that in planar 5‐regular graphs all 1‐factors are extendable. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 114–128, 2010  相似文献   

19.
1. IntroductionLet G be a finite group and S a subset of G such that S--1 ~ S, and 1 f S. The Cayleygraph Cay (G, S) is defined as the simple graph with V ~ G, and E = {glgZ I g,'g, or g,'g,6 S, gi, gi E G}. Cay (G, S) is vertex-transitive, and it is connected if and only if (S) = G,i.e. S is a generating set of G[1]. If G = Zn, then Cay (Zn, S) is called a circulant graph. Ithas been proved that any connected Cayley graph on a finite abelian group is hamiltonianl2].Furthermore, …  相似文献   

20.
Y.Alavi,P.Erds等人在[1]中提出猜想:设自然数α_1,α_2…α_k满足且,则可以划分成k个互不相交子集S_1,S_2,···,S_k,满足.本文证明了这个猜想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号