首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
In this article we find necessary and sufficient conditions to decompose a complete equipartite graph into cycles of uniform length, in the case that the length is both even and short relative to the number of parts. © 2010 Wiley Periodicals, Inc. J Combin Designs 19:131‐143, 2011  相似文献   

2.
A k-cycle decomposition of a complete multipartite graph is said to be gregarious if each k-cycle in the decomposition has its vertices in k different partite sets. Equipartite 3-cycle systems are 3-GDDs (and so are automatically gregarious), and necessary and sufficient conditions for their existence are known. The cases of equipartite gregarious 4-, 6- and 8-cycle systems have also been dealt with (using techniques that could be applied in the case of any even length cycle). Here we give necessary and sufficient conditions for the existence of a gregarious 5-cycle decomposition of the complete equipartite graph Km(n) (in effect the first odd length cycle case for which the gregarious constraint has real meaning). In doing so, we also define some general cyclic constructions for the decomposition of certain complete equipartite graphs into gregarious p-cycles (where p is an odd prime).  相似文献   

3.
We show that a complete equipartite graph with four partite sets has an edge-disjoint decomposition into cycles of length k if and only if k≥3, the partite set size is even, k divides the number of edges in the equipartite graph and the total number of vertices in the graph is at least k. We also show that a complete equipartite graph with four even partite sets has an edge-disjoint decomposition into paths with k edges if and only if k divides the number of edges in the equipartite graph and the total number of vertices in the graph is at least k+1.  相似文献   

4.
In 1998 Cavenagh [N.J. Cavenagh, Decompositions of complete tripartite graphs into k-cycles, Australas. J. Combin. 18 (1998) 193-200] gave necessary and sufficient conditions for the existence of an edge-disjoint decomposition of a complete equipartite graph with three parts, into cycles of some fixed length k. Here we extend this to paths, and show that such a complete equipartite graph with three partite sets of size m, has an edge-disjoint decomposition into paths of length k if and only if k divides 3m2 and k<3m. Further, extending to five partite sets, we show that a complete equipartite graph with five partite sets of size m has an edge-disjoint decomposition into cycles (and also into paths) of length k with k?3 if and only if k divides 10m2 and k?5m for cycles (or k<5m for paths).  相似文献   

5.
A 6-cycle system of a graph G is an edge-disjoint decomposition of G into 6-cycles. Graphs G, for which necessary and sufficient conditions for existence of a 6-cycle system have been found, include complete graphs and complete equipartite graphs. A 6-cycle system of G is said to be 2-perfect if the graph formed by joining all vertices distance 2 apart in the 6-cycles is again an edge-disjoint decomposition of G, this time into 3-cycles, since the distance 2 graph in any 6-cycle is a pair of disjoint 3-cycles.Necessary and sufficient conditions for existence of 2-perfect 6-cycle systems of both complete graphs and complete equipartite graphs are known, and also of λ-fold complete graphs. In this paper, we complete the problem, giving necessary and sufficient conditions for existence of λ-fold 2-perfect 6-cycle systems of complete equipartite graphs.  相似文献   

6.
    
If a graph G decomposes into edge‐disjoint 4‐cycles, then each vertex of G has even degree and 4 divides the number of edges in G. It is shown that these obvious necessary conditions are also sufficient when G is any simple graph having minimum degree at least , where n is the number of vertices in G. This improves the bound given by Gustavsson (PhD Thesis, University of Stockholm, 1991), who showed (as part of a more general result) sufficiency for simple graphs with minimum degree at least . On the other hand, it is known that for arbitrarily large values of n there exist simple graphs satisfying the obvious necessary conditions, having n vertices and minimum degree , but having no decomposition into edge‐disjoint 4‐cycles. We also show that if G is a bipartite simple graph with n vertices in each part, then the obvious necessary conditions for G to decompose into 4‐cycles are sufficient when G has minimum degree at least .  相似文献   

7.
    
The circulant G = C(n,S), where , is the graph with vertex set Zn and edge set . It is shown that for n odd, every 6‐regular connected circulant C(n, S) is decomposable into Hamilton cycles. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

8.
    
Using the technique of amalgamation‐detachment, we show that the complete equipartite multigraph can be decomposed into cycles of lengths (plus a 1‐factor if the degree is odd) whenever there exists a decomposition of into cycles of lengths (plus a 1‐factor if the degree is odd). In addition, we give sufficient conditions for the existence of some other, related cycle decompositions of the complete equipartite multigraph .  相似文献   

9.
    
We show that the necessary conditions for the decomposition of the complete graph of odd order into cycles of a fixed even length and for the decomposition of the complete graph of even order minus a 1‐factor into cycles of a fixed odd length are also sufficient. © 2002 John Wiley & Sons, Inc. J Combin Designs 10: 27–78, 2002  相似文献   

10.
    
It is shown that the obvious necessary conditions for the existence of a decomposition of the complete multigraph with n vertices and with λ edges joining each pair of distinct vertices into m‐cycles, or into m‐cycles and a perfect matching, are also sufficient. This result follows as an easy consequence of more general results which are obtained on decompositions of complete multigraphs into cycles of varying lengths. © 2010 Wiley Periodicals, Inc. J Combin Designs 19:42‐69, 2010  相似文献   

11.
    
For all integers n ≥ 5, it is shown that the graph obtained from the n‐cycle by joining vertices at distance 2 has a 2‐factorization is which one 2‐factor is a Hamilton cycle, and the other is isomorphic to any given 2‐regular graph of order n. This result is used to prove several results on 2‐factorizations of the complete graph Kn of order n. For example, it is shown that for all odd n ≥ 11, Kn has a 2‐factorization in which three of the 2‐factors are isomorphic to any three given 2‐regular graphs of order n, and the remaining 2‐factors are Hamilton cycles. For any two given 2‐regular graphs of even order n, the corresponding result is proved for the graph KnI obtained from the complete graph by removing the edges of a 1‐factor. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
We construct a new symmetric Hamilton cycle decomposition of the complete graph Kn for odd n > 7. © 2003 Wiley Periodicals, Inc.  相似文献   

13.
    
《Discrete Mathematics》2022,345(10):113012
An even cycle decomposition of a graph is a partition of its edges into even cycles. Markström constructed infinitely many 2-connected 4-regular graphs without even cycle decompositions. Má?ajová and Mazák then constructed an infinite family of 3-connected 4-regular graphs without even cycle decompositions. In this note, we further show that there exists an infinite family of 4-connected 4-regular graphs without even cycle decompositions.  相似文献   

14.
The complete multipartite graph Kn(m) with n parts of size m is shown to have a decomposition into n-cycles in such a way that each cycle meets each part of Kn(m); that is, each cycle is said to be gregarious. Furthermore, gregarious decompositions are given which are also resolvable.  相似文献   

15.
    
We provide two new constructions for pairs of mutually orthogonal symmetric hamiltonian double Latin squares. The first is a tripling construction, and the second is derived from known constructions of hamilton cycle decompositions of when is prime.  相似文献   

16.
A k-cycle decomposition of a complete multipartite graph is said to be gregarious if each k-cycle in the decomposition has its vertices in k different partite sets. Equipartite gregarious 3-cycle systems are 3-GDDs, and necessary and sufficient conditions for their existence are known (see for instance the CRC Handbook of Combinatorial Designs, 1996, C.J. Colbourn, J.H. Dinitz (Eds.), Section III 1.3). The cases of equipartite and of almost equipartite 4-cycle systems were recently dealt with by Billington and Hoffman. Here, for both 6-cycles and for 8-cycles, we give necessary and sufficient conditions for existence of a gregarious cycle decomposition of the complete equipartite graph Kn(a) (with n parts, n?6 or n?8, of size a).  相似文献   

17.
For a set of integers , we define a q-ary -cycle to be an assignment of the symbols 1 through q to the integers modulo q n so that every word appears on some translate of . This definition generalizes that of de Bruijn cycles, and opens up a multitude of questions. We address the existence of such cycles, discuss reduced cycles (ones in which the all-zeroes string need not appear), and provide general bounds on the shortest sequence which contains all words on some translate of . We also prove a variant on recent results concerning decompositions of complete graphs into cycles and employ it to resolve the case of completely.AMS Subject Classification: 94A55, 05C70.  相似文献   

18.
    
For all odd integers n ≥ 1, let Gn denote the complete graph of order n, and for all even integers n ≥ 2 let Gn denote the complete graph of order n with the edges of a 1‐factor removed. It is shown that for all non‐negative integers h and t and all positive integers n, Gn can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in Gn. © 2004 Wiley Periodicals, Inc.  相似文献   

19.
    
We determine the necessary and sufficient conditions for the existence of a decomposition of the complete graph of even order with a 1‐factor added into cycles of equal length. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 170–207, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10019  相似文献   

20.
    
The existence problem for a Hamiltonian cycle decomposition of (the so called cocktail party graph) with a dihedral automorphism group acting sharply transitively on the vertices is completely solved. Such Hamiltonian cycle decompositions exist for all even n while, for n odd, they exist if and only if the following conditions hold: (i) n is not a prime power; (ii) there is a suitable ? such that (mod 2?) for all prime factors p of n and the number of the prime factors (counted with their respective multiplicities) such that (mod ) is even. Thus in particular one has a dihedral Hamiltonian cycle decomposition of the cocktail party graph on 8k vertices for all k, while it is known that no such cyclic Hamiltonian cycle decomposition exists. Finally, this paper touches on a recently introduced symmetry requirement by proving that there exists a dihedral and symmetric Hamiltonian cycle system of if and only if (mod 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号