首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence problems of perfect difference families with block size k, k=4,5, and additive sequences of permutations of length n, n=3,4, are two outstanding open problems in combinatorial design theory for more than 30 years. In this article, we mainly investigate perfect difference families with block size k=4 and additive sequences of permutations of length n=3. The necessary condition for the existence of a perfect difference family with block size 4 and order v, or briefly (v, 4,1)‐PDF, is v≡1(mod12), and that of an additive sequence of permutations of length 3 and order m, or briefly ASP (3, m), is m≡1(mod2). So far, (12t+1,4,1)‐PDFs with t<50 are known only for t=1,4−36,41,46 with two definiteexceptions of t=2,3, and ASP (3, m)'s with odd 3<m<200 are known only for m=5,7,13−29,35,45,49,65,75,85,91,95,105,115,119,121,125,133,135,145,147,161,169,175,189,195 with two definite exceptions of m=9,11. In this article, we show that a (12t+1,4,1)‐PDF exists for any t⩽1,000 except for t=2,3, and an ASP (3, m) exists for any odd 3<m<200 except for m=9,11 and possibly for m=59. The main idea of this article is to use perfect difference families and additive sequences of permutations with “holes”. We first introduce the concepts of an incomplete perfect difference matrix with a regular hole and a perfect difference packing with a regular difference leave, respectively. We show that an additive sequence of permutations is in fact equivalent to a perfect difference matrix, then describe an important recursive construction for perfect difference matrices via perfect difference packings with a regular difference leave. Plenty of perfect difference packings with a desirable difference leave are constructed directly. We also provide a general recursive construction for perfect difference packings, and as its applications, we obtain extensive recursive constructions for perfect difference families, some via incomplete perfect difference matrices with a regular hole. Examples of perfect difference packings directly constructed are used as ingredients in these recursive constructions to produce vast numbers of perfect difference families with block size 4. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 415–449, 2010  相似文献   

2.
A planar cyclic difference packing modulo v is a collection D = {d1, d2,…,dk} of distinct residues modulo v such that any residue α ≢ 0 (mod v) has at most one representation as a difference didj (mod v). This paper develops various constructions of such designs and for a fixed positive integer v presents upper and lower bounds on Ψ (v), the maximal number of elements that a planar cyclic difference packing modulo v can contain. This paper also presents the results of calculating Ψ (v) for v ≤ 144, including the fact that 134 is the smallest value of v for which the elementary upper bound of exceeds Ψ (v) by two. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 426–434, 2000  相似文献   

3.
We exhibit cyclic (Kv, Ck)‐designs with v > k, vk (mod 2k), for k an odd prime power but not a prime, and for k = 15. Such values were the only ones not to be analyzed yet, under the hypothesis vk (mod 2k). Our construction avails of Rosa sequences and approximates the Hamiltonian case (v = k), which is known to admit no cyclic design with the same values of k. As a particular consequence, we settle the existence question for cyclic (Kv, Ck)‐designs with k a prime power. © 2004 Wiley Periodicals, Inc. J Combin Designs 12: 299–310, 2004.  相似文献   

4.
The study of resolvable packings of Kv with Kr × Kc's is motivated by the use of DNA library screening. We call such a packing a (v, Kr × Kc, 1)‐RP. As usual, a (v, Kr × Kc, 1)‐RP with the largest possible number of parallel classes (or, equivalently, the largest possible number of blocks) is called optimal. The resolvability implies v ≡ 0 (mod rc). Let ρ be the number of parallel classes of a (v, Kr × Kc, 1)‐RP. Then we have ρ ≤ ?(v‐1)/(r + c ? 2)?. In this article, we present a number of constructive methods to obtain optimal (v, K2 × Kc, 1)‐RPs meeting the aforementioned bound and establish some existence results. In particular, we show that an optimal (v, K2 × K3, 1)‐RP meeting the bound exists if and only if v ≡ 0 (mod 6). © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 177–189, 2009  相似文献   

5.
In this paper, we present two constructions of divisible difference sets based on skew Hadamard difference sets. A special class of Hadamard difference sets, which can be derived from a skew Hadamard difference set and a Paley type regular partial difference set respectively in two groups of orders v 1 and v 2 with |v 1 − v 2| = 2, is contained in these constructions. Some result on inequivalence of skew Hadamard difference sets is also given in the paper. As a consequence of Delsarte’s theorem, the dual set of skew Hadamard difference set is also a skew Hadamard difference set in an abelian group. We show that there are seven pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 35 or 37, and also at least four pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 39. Furthermore, the skew Hadamard difference sets deduced by Ree-Tits slice symplectic spreads are the dual sets of each other when q ≤ 311.   相似文献   

6.
L. Ji 《组合设计杂志》2007,15(2):151-166
A (2,3)‐packing on X is a pair (X, ), where is a set of 3‐subsets (called blocks) of X, such that any pair of distinct points from X occurs together in at most one block. Its leave is a graph (X,E) such that E consists of all the pairs which do not appear in any block of . In this article, we shall construct a set of 6k ? 2 disjoint (2,3)‐packings of order 6k + 4 with K1,3 ∪ 3kK2 or G1 ∪ (3k ? 1)K2 as their common leave for any integer k ≥ 1 with a few possible exceptions (G1 is a special graph of order 6). Such a system can be used to construct perfect threshold schemes as noted by Schellenberg and Stinson ( 22 ). © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

7.
Generalized Hadamard matrices are used for the construction of a class of quasi‐residual nonresolvable BIBD's with parameters . The designs are not embeddable as residual designs into symmetric designs if n is even. The construction yields many nonisomorphic designs for every given n ≥ 2, including more than 1017 nonisomorphic 2‐(63,21,10) designs. © 2006 Wiley Periodicals, Inc. J Combin Designs 15: 460–464, 2007  相似文献   

8.
D. Wu  G. Ge  L. Zhu 《组合设计杂志》2001,9(6):401-423
Generalized Steiner systems GSd(t, k, v, g) were first introduced by Etzion and used to construct optimal constant‐weight codes over an alphabet of size g + 1 with minimum Hamming distance d, in which each codeword has length v and weight k. Much work has been done for the existence of generalized Steiner triple systems GS(2, 3, v, g). However, for block size four there is not much known on GSd(2, 4, v, g). In this paper, the necessary conditions for the existence of a GSd(t, k, v, g) are given, which answers an open problem of Etzion. Some singular indirect product constructions for GSd(2, k, v, g) are also presented. By using both recursive and direct constructions, it is proved that the necessary conditions for the existence of a GS4(2, 4, v, g) are also sufficient for g = 2, 3, 6. © 2001 John Wiley & Sons, Inc. J Combin Designs 9: 401–423, 2001  相似文献   

9.
Kantor [ 5 ] proved an exponential lower bound on the number of pairwise inequivalent difference sets in the elementary abelian group of order 22s+2. Dillon [ 3 ] generalized a technique of McFarland [ 6 ] to provide a framework for determining the number of inequivalent difference sets in 2‐groups with a large elementary abelian direct factor. In this paper, we consider the opposite end of the spectrum, the rank 2 group ? , and compute an exponential lower bound on the number of pairwise inequivalent difference sets in this group. In the process, we demonstrate that Dillon difference sets in groups ? can be constructed via the recursive construction from [ 2 ] and we show that there are exponentially many pairwise inequivalent difference sets that are inequivalent to any Dillon difference set. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 249–259, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10046  相似文献   

10.
This paper deals with the behaviour of k‐outgoing solutions of ?Δu?k2u=f outside a fading soft obstacle. We extend an approach using the so‐called Lax–Phillips construction and the well‐known properties of the capacity of smooth obstacles. So, classical results are recovered in a straightforward manner. The previous approach enables us to consider the case of obstacles composed of many tiny spheres. Roughly speaking, we prove that the scattering amplitude is approximately the sum of the scattering amplitudes scattered by each isolated sphere, which is an alternative form of the first Born approximation. As a consequence, two inverse problems are solved. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Splitting balanced incomplete block designs were first formulated by Ogata, Kurosawa, Stinson, and Saido recently in the investigation of authentication codes. This article investigates the existence of splitting balanced incomplete block designs, i.e., (v, 3k, λ)‐splitting BIBDs; we give the spectrum of (v, 3 × 2, λ)‐splitting BIBDs. As an application, we obtain an infinite class of 2‐splitting A‐codes. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
In this article, we settle a problem which originated in 4 regarding the existence of resolvable (K4 ? e)‐design. We solve the problem with two possible exceptions. © 2007 Wiley Periodicals, Inc. J Combin Designs 15: 502–510, 2007  相似文献   

13.
We give an explicit solution to the existence problem for 1‐rotational k‐cycle systems of order v < 3k with k odd and v ≠ 2k + 1. We also exhibit a 2‐rotational k‐cycle system of order 2k + 1 for any odd k. Thus, for k odd and any admissible v < 3k there exists a 2‐rotational k‐cycle system of order v. This may also be viewed as an alternative proof that the obvious necessary conditions for the existence of odd cycle systems are also sufficient. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 433–441, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10061  相似文献   

14.
G. Ge  D. Wu 《组合设计杂志》2003,11(6):381-393
Generalized Steiner systems GS(2, k, v, g) were first introduced by Etzion and used to construct optimal constant weight codes over an alphabet of size g + 1 with minimum Hamming distance 2k ? 3, in which each codeword has length v and weight k. As to the existence of a GS(2, k, v, g), a lot of work has been done for k = 3, while not so much is known for k = 4. The notion k‐*GDD was first introduced and used to construct GS(2, 3, v, 6). In this paper, singular indirect product (SIP) construction for GDDs is modified to construct GS(2, 4, v, g) via 4‐*GDDs. Furthermore, it is proved that the necessary conditions for the existence of a 4‐*GDD(3n), namely, n ≡ 0, 1 (mod 4) and n ≥ 8 are also sufficient. The known results on the existence of a GS(2, 4, v, 3) are then extended. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 381–393, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10047  相似文献   

15.
In this article, a kind of auxiliary design BSA* for constructing BSAs is introduced and studied. Two powerful recursive constructions on BSAs from 3‐IGDDs and BSA*s are exploited. Finally, the necessary and sufficient conditions for the existence of a BSA(v, 3, λ; α) with α = 2, 3 are established. © 2006 Wiley Periodicals, Inc. J Combin Designs 15: 61–76, 2007  相似文献   

16.
The existence of doubly near resolvable (v,2,1)-BIBDs was established by Mullin and Wallis in 1975. In this article, we determine the spectrum of a second class of doubly near resolvable balanced incomplete block designs. We prove the existence of DNR(v,3,2)-BIBDs for v ≡ 1 (mod 3), v ≥ 10 and v ? {34,70,85,88,115,124,133,142}. The main construction is a frame construction, and similar constructions can be used to prove the existence of doubly resolvable (v,3,2)-BIBDs and a class of Kirkman squares with block size 3, KS3(v,2,4). © 1994 John Wiley & Sons, Inc.  相似文献   

17.
We prove a new characterization of weakly regular ternary bent functions via partial difference sets. Partial difference sets are combinatorial objects corresponding to strongly regular graphs. Using known families of bent functions, we obtain in this way new families of strongly regular graphs, some of which were previously unknown. One of the families includes an example in [N. Hamada, T. Helleseth, A characterization of some {3v2+v3,3v1+v2,3,3}-minihypers and some [15,4,9;3]-codes with B2=0, J. Statist. Plann. Inference 56 (1996) 129-146], which was considered to be sporadic; using our results, this strongly regular graph is now a member of an infinite family. Moreover, this paper contains a new proof that the Coulter-Matthews and ternary quadratic bent functions are weakly regular.  相似文献   

18.
Abelian difference sets with parameters (120, 35, 10) were ruled out by Turyn in 1965. Turyn's techniques do not apply to nonabelian groups. We attempt to determine the existence of (120, 35, 10) difference sets in the 44 nonabelian groups of order 120. We prove that if a solvable group admits a (120, 35, 10) difference set, then it admits a quotient group isomorphic to the cyclic group of order 24 or to U24 ? 〈x,y : x8 = y3 = 1, xyx?1 = y?1〉. We describe a computer search, which rules out solutions with a ?24 quotient. The existence question remains undecided in the three solvable groups admitting a U24 quotient. The question also remains undecided for the three nonsolvable groups of order 120. © 2004 Wiley Periodicals, Inc.  相似文献   

19.
In this article, we investigate the existence of pure (v, 4, λ)-PMD with λ = 1 and 2, and obtain the following results: (1) a pure (v, 4, 1)-PMD exists for every positive integer v = 0 or 1 (mod 4) with the exception of v = 4 and 8 and the possible exception of v = 12; (2) a pure (v, 4, 2)-PMD exists for every integer v ≥ 6. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Generalized Steiner systems GS (3, 4, v, 2) were first discussed by Etzion and used to construct optimal constant weight codes over an alphabet of size three with minimum Hamming distance three, in which each codeword has length v and weight four. Not much is known for GS (3, 4, v, 2)s except for a recursive construction and two small designs for v = 8,10 given by Etzion. In this paper, more small designs are found by computer search and also given are direct constructions based on finite fields and rotational Steiner quadruple systems and recursive constructions using three-wise balanced designs. Some infinite families are also obtained.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号