首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对具有工艺路径柔性的车间调度问题,提出基于OR子图和子路径的工艺路径柔性描述方法,该描述方法形式简单且允许OR子图多层嵌套。以此为基础,设计了基于遗传算法的工艺路径柔性调度算法,并采用以工艺路径编码、机器编码和工件调度编码为基础的三维染色体编码策略,其中,工艺路径编码和机器编码分别通过最大子路径数量和最大机器数量随机产生,其优势在于任意染色体均表示可行解,并可以使用简单的交叉算子和变异算子实现遗传操作且其后代亦为可行解。最后通过实验证明了算法的优化能力。  相似文献   

2.
In this paper, we study the benefits of a focused factory using lead-time as a performance measure. Specifically, we model a production process, using multi-class (multiple product types), general interarrival and processing time distributions with multiple machines (GI/G/c) queuing models for deriving each product’s mean lead-time. We also perform simulations for estimating the standard deviation of lead times. There are two product types: a standard and a customized product. The customized product has a more variable demand pattern than the standard product, and also requires additional processing time (setup and run time) in its production process. We assume that management is willing to sacrifice the lead-time performance of the customized product in favor of improved performance for the standard product. The paper shows that focusing the factory is more attractive for plants operating at higher utilization, and manufacturing products that have higher processing time and demand variability differentials between product types.  相似文献   

3.
In this paper, we present a basic discrete-time queueing model whereby the service process is decomposed in two (variable) components: the demand of each customer, expressed in a number of work units needed to provide full service of the customer, and the capacity of the server, i.e., the number of work units that the service facility is able to perform per time unit. The model is closely related to multi-server queueing models with server interruptions, in the sense that the service facility is able to deliver more than one unit of work per time unit, and that the number of work units that can be executed per time unit is not constant over time.  相似文献   

4.
研究一类带有运输且加工具有灵活性的两阶段无等待流水作业排序问题, 其中每阶段只有一台机器, 每个工件有两道工序需要依次在两台机器上加工, 工件在两台机器上的加工及两道工序之间不允许等待. 给出两种近似算法, 并分别分析其最坏情况界. 第一种算法是排列排序, 证明了最坏情况界不超过5/2; 第二种算法将工件按照两道工序加工时间之和的递增顺序排序, 证明其最坏情况界不超过2. 最后, 通过数值模拟比较算法的性能. 对问题中各参数取不同值的情况, 分别生成若干个实例, 用算法得到的解与最优解的下界作比值, 通过分析这些比值的最大值、最小值和平均值来比较上述两个算法的性能.  相似文献   

5.
We consider open shop problems with unit processing times,n jobs have to be processed onm machines. The order in which a given job is processed on the machines is not fixed. For each job a release time or a due date may be given. Additional, we consider the restriction that every machine must perform all corresponding operations without any delay time. Unit time open shop problems with release times to minimize total completion time were unsolved up to now for both allowed and forbidden delay times. We will solve these problems in the case of two and three machines. Furthermore we will give polynomial algorithms for several no-delay-problems with due dates.  相似文献   

6.
Managing capacity flexibility in make-to-order production environments   总被引:3,自引:0,他引:3  
This paper addresses the problem of managing flexible production capacity in a make-to-order (MTO) manufacturing environment. We present a multi-period capacity management model where we distinguish between process flexibility (the ability to produce multiple products on multiple production lines) and operational flexibility (the ability to dynamically change capacity allocations among different product families over time). For operational flexibility, we consider two polices: a fixed allocation policy where the capacity allocations are fixed throughout the planning horizon and a dynamic allocation policy where the capacity allocations change from period to period. The former approach is modeled as a single-stage stochastic program and solved using a cutting-plane method. The latter approach is modeled as a multi-stage stochastic program and a sampling-based decomposition method is presented to identify a feasible policy and assess the quality of that policy. A computational experiment quantifies the benefits of operational flexibility and demonstrates that it is most beneficial when the demand and capacity are well-balanced and the demand variability is high. Additionally, our results reveal that myopic operating policies may lead a firm to adopt more process flexibility and form denser flexibility configuration chains. That is, process flexibility may be over-valued in the literature since it is assumed that a firm will operate optimally after the process flexibility decision. We also show that the value of process flexibility increases with the number of periods in the planning horizon if an optimal operating policy is employed. This result is reversed if a myopic allocation policy is adopted instead.  相似文献   

7.
In this paper, we deal with single machine scheduling problems subject to time dependent effects. The main point in our models is that we do not assume a constant processing rate during job processing time. Rather, processing rate changes according to a fixed schedule of activities, such as replacing a human operator by a less skilled operator. The contribution of this paper is threefold. First, we devise a time-dependent piecewise constant processing rate model and show how to compute processing time for a resumable job. Second, we prove that any time-dependent continuous piecewise linear processing time model can be generated by the proposed rate model. Finally, we propose polynomial-time algorithms for some single machine problems with job independent rate function. In these procedures the job-independent rate effect does not imply any restriction on the number of breakpoints for the corresponding continuous piecewise linear processing time model. This is a clear element of novelty with respect to the polynomial-time algorithms proposed in previous contributions for time-dependent scheduling problems.  相似文献   

8.
This paper provides a comparative analysis of five possible production strategies for two kinds of flexibility investment, namely flexible technology and flexible capacity, under demand fluctuations. Each strategy is underpinned by a set of operations decisions on technology level, capacity amount, production quantity, and pricing. By evaluating each strategy, we show how market uncertainty, production cost structure, operations timing, and investment costing environment affect a firm’s strategic decisions. The results show that there is no sequential effect of the two flexibility investments. We also illustrate the different ways in which flexible technology and flexible capacity affect a firm’s profit under demand fluctuations. The results reveal that compared to no flexibility investment, flexible technology investment earns the same or a higher profit for a firm, whereas flexible capacity investment can be beneficial or harmful to a firm’s profit. Moreover, we prove that higher flexibility does not guarantee more profit. Depending on the situation, the optimal strategy can be any one of the five possible strategies. We also provide the optimality conditions for each strategy.  相似文献   

9.
The goal of this paper is to investigate how uncertainties in demand and production should be incorporated into manufacturing system design problems. We examine two problems in manufacturing system design: the resource allocation problem and the product grouping problem. In the resource allocation problem, we consider the issue of how to cope with uncertainties when we utilize two types of resources: actual processing capacity and stored capacity (inventory). A closed form solution of the optimal allocation scheme for each type of capacity is developed, and its performance is compared to that of the conventional scheme where capacity allocation and inventory control decisions are made sequentially. In the product grouping problem, we consider the issue of how we design production lines when each line is dedicated to a certain set of products. We formulate a mathematical program in which we simultaneously determine the number of production lines and the composition of each line. Two heuristics are developed for the problem.  相似文献   

10.
In this communication we consider a two machine open shop in which a job requires processing on both machines. However, in contrast to the classical open shop, the two operations of any given job may overlap in time. The objective function under consideration is the minimization of the total completion time. This model has been considered before by Wagneur and Sriskandarajah [Eur. J. Oper. Res. 71 (1993) 366] and they presented a proof showing that minimizing the total completion time in a two machine open shop with jobs overlap is strongly NP-hard. Their proof is based on a reduction of the numerical matching with target sums (NMTS) problem; however, their proof is unfortunately not correct. In this communication we provide a counterexample that shows that their reduction does not hold. Our counterexample implies that the complexity status of the two machine open shop with job overlap remains open.  相似文献   

11.
考虑具有工件相关的退化效应和维修活动的单机排序模型,讨论了工期窗口安排问题.在这一模型中,机器在加工过程中产生退化使效率降低,工件的实际加工时间不仅与其所在排序中的位置有关并且与其本身的退化率有关;然而,维修活动能使机器的加工效率得到恢复.工期窗口的开始时间是已给定的常量,而工期窗口的结束时间是需要确定的变量.目标是得到安排维修活动的最佳时间、最佳工期窗口的大小和最优排序以便最小化流时间、提早、延误和工期窗口大小的总处罚函数.对这一问题,给出了一多项式算法.  相似文献   

12.
13.
We consider the problem of introducing flexibility in the schedule determination phase, for shop scheduling problems with release dates and deadlines. The flexibility is provided by generating a family of schedules, instead of a unique one. We represent a family of schedules by an ordered group assignment defining for each machine a sequence of groups where the operations within a group are totally permutable. We propose a polynomial time algorithm to evaluate the worst case completion time of operations in an ordered group assignment. We then consider the single machine problem with heads and deadlines associated to operations, as a sub-problem of the job shop problem. We propose polynomial time dynamic programming algorithms for minimizing the number of groups and for maximizing the number of characterized sequences, under specific constraints. Finally, computational experiences on job shop benchmarks, show the impact of grouping operations on the solution makespan value.  相似文献   

14.
In this paper, we present a mixed-integer fuzzy programming model and a genetic algorithm (GA) based solution approach to a scheduling problem of customer orders in a mass customizing furniture industry. Independent job orders are grouped into multiple classes based on similarity in style so that the required number of setups is minimized. The family of jobs can be partitioned into batches, where each batch consists of a set of consecutively processed jobs from the same class. If a batch is assigned to one of available parallel machines, a setup is required at the beginning of the first job in that batch. A schedule defines the way how the batches are created from the independent jobs and specifies the processing order of the batches and that of the jobs within the batches. A machine can only process one job at a time, and cannot perform any processing while undergoing a setup. The proposed formulation minimizes the total weighted flowtime while fulfilling due date requirements. The imprecision associated with estimation of setup and processing times are represented by fuzzy sets.  相似文献   

15.
A machining center is an advanced NC (Numerical Control) machine that has the capability to perform a variety of operations on a part by automatically changing the cutting tools. Because of its versatile processing capabilities, a machining center is often a production bottleneck, and effective scheduling can result in significant improvement of system performance. The problem, however, is very difficult since many factors such as machine setups, pallets, tool magazine, and possible tool overlapping among different part types, etc., have to be considered. This paper presents an optimization-based approach for the scheduling of a machining center with two pallets. A novel “separable” problem formulation that considers the above mentioned factors is presented. Lagrangian relaxation is applied to decompose the problem into simple subproblems, which are efficiently solved without encountering complexity difficulties. The subgradient method is then used to update the multipliers. Testing results indicate that the approach is effective, and the algorithm provides a valuable tool for solving stand-alone machining center problems. The approach also points out a direction on how to consider machining centers within a job shop environment.  相似文献   

16.
Any solution to facility location problems will consider determining the best suitable locations with respect to certain criteria. Among different types of location problems, involving emergency service system (ESSs) are one of the most widely studied in the literature, and solutions to these problems will mostly aim to minimize the mean response time to demands. In practice, however, a demand may not be served from its nearest facility if that facility is engaged in serving other demands. This makes it a requirement to assign backup services so as to improve response time and service quality. The level of backup service is a key, strategic-level planning factor, and must be taken into consideration carefully. Moreover, in emergency service operations conducted in congested demand regions, demand assignment policy is another important factor that affects the system performance. Models failing to adopt sufficient levels of backup service and realistic demand assignment policies may significantly deteriorate the system performance.Considering the classic p-median problem (pMP) location model, this paper investigates the effects of backup service level, demand assignment policy, demand density, and number of facilities and their locations on the solution performance in terms of multiple metrics. For this purpose, we adopt a combined optimization and simulation approach. We will first modify the classic pMP to account for distances to backup services. Next, we employ a discrete event simulation to evaluate the performance of location schemes obtained from the deterministic mathematical model. Our results provide insights for decision-makers while planning ESS operations.  相似文献   

17.
The circuit complexity of monomial set computation is studied in the paper. In the model considered here, the complexity means the minimal number of composition operations sufficient for calculating the system from its variables. It is established that the considered complexity measure can be much less than known complexity measures corresponding to models admitting, for example, either multiplication operations only, or multiplication and division operations, or multiplication operations with the ability to use inverse variables. However, this feature of significant “computation strength” is not universal, which is confirmed by an appropriate example. Furthermore, for a system containing two monomials of two variables we obtained an exact complexity value. We have also established that duality reasons do not work (or work poorly) in calculations using composition operation.  相似文献   

18.
Consider a manufacturing process in which a group of machines (or people) perform a single operation on a number of different parts. The processing time depends on both the part and the machine. In addition, each machine requires significant setup time between processing different part types. The problem consists of obtaining a feasible allocation of parts to machines such that the makespan (i.e. greatest machine workload) is minimized. We present two equivalent 0–1 models. The first model arises by considering the assignment of individual parts to machines. It is amenable to Lagrangian decomposition techniques. The second model is more hierarchical in nature; it considers the two options of assigning an entire part type to a single machine, or of splitting the type across machines. The second model is more amenable than the first to branch-and-bound techniques. We report about our computational experience for finding lower bounds of the optimal solution by appending violated cuts and, ultimately, obtaining the optimal solution of real-life problems.  相似文献   

19.
This paper analyses a new approach to the machine loading problem arising in flexible manufacturing systems (FMSs). This approach allows the operations to be assigned to machines assuming that machines have access to all the tools required for their operations. This exploits the flexibility of the FMS completely. Next an allocation of tools to machines is determined which satisfies the tool requirements for each machine and minimizes the total number of tools. Thus this approach minimizes the unnecessary tool duplications in the system and maximizes the tool utilization. The problem is modeled as an integer linear program (ILP). We notice that the main problem has a block diagonal structure which is decomposable by relaxing a set of linking constraints. Each separated sub-problem represents a problem of allocation of a single type of tools. We develop a branch-and-bound based exact solution procedure and three heuristic procedures to solve the sub-problems. Our lower bounding approach uses Lanrangean relaxation. The solutions to the Lagrangean relaxation are further used to determine the branching sequences and to develop heuristic approaches. Since finding even a feasible solution to the main problem is NP-hard, we develop only enumerative procedures to solve the main problem. Finally, these solution procedures are tested on randomly generated test problems.  相似文献   

20.
We model the problem of dispatching time control in rolling horizons following a periodic optimization approach reactionary to travel time and passenger demand disturbances. This model provides more flexibility to transport planners allowing them to adjust the bus schedules during the daily operations. We prove that our periodic optimization model is a convex quadratic program, guaranteeing the global optimality of its solution. To reduce the computational burden, we introduce an iterative algorithm that uses gradient approximations to obtain an approximate dispatching solution. The proposed solution method is found to be significantly faster than exact optimization approaches for quadratic programming and maintains an (almost) negligible optimality gap in realistic bus operation scenarios. Finally, we show that our periodic optimization method outperforms myopic methods that adjust the dispatching time of each bus trip in isolation using operational data from bus line 302 in Singapore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号