首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Summary We describe a quadrature method for the numerical solution of the logarithmic integral equation of the first kind arising from the single-layer approach to the Dirichlet problem for the two-dimensional Helmholtz equation in smooth domains. We develop an error analysis in a Sobolev space setting and prove fast convergence rates for smooth boundary data.  相似文献   

2.
We consider a class of boundary value problems for linear multi-term fractional differential equations which involve Caputo-type fractional derivatives. Using an integral equation reformulation of the boundary value problem, some regularity properties of the exact solution are derived. Based on these properties, the numerical solution of boundary value problems by piecewise polynomial collocation methods is discussed. In particular, we study the attainable order of convergence of proposed algorithms and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by two numerical examples.  相似文献   

3.
The solution of eigenvalue problems for partial differential operators by using boundary integral equation methods usually involves some Newton potentials which may be resolved by using a multiple reciprocity approach. Here we propose an alternative approach which is in some sense equivalent to the above. Instead of a linear eigenvalue problem for the partial differential operator we consider a nonlinear eigenvalue problem for an associated boundary integral operator. This nonlinear eigenvalue problem can be solved by using some appropriate iterative scheme, here we will consider a Newton scheme. We will discuss the convergence and the boundary element discretization of this algorithm, and give some numerical results.  相似文献   

4.
Based on an integral equation formulation, we present numerical methods for the inverse problem of recovering part of the domain boundary from boundary measurements of solutions to the Laplace equation on an accessible part of the boundary.  相似文献   

5.
We consider a time-harmonic electromagnetic scattering problem for an inhomogeneous medium. Some symmetry hypotheses on the refractive index of the medium and on the electromagnetic fields allow to reduce this problem to a two-dimensional scattering problem. This boundary value problem is defined on an unbounded domain, so its numerical solution cannot be obtained by a straightforward application of usual methods, such as for example finite difference methods, and finite element methods. A possible way to overcome this difficulty is given by an equivalent integral formulation of this problem, where the scattered field can be computed from the solution of a Fredholm integral equation of second kind. The numerical approximation of this problem usually produces large dense linear systems. We consider usual iterative methods for the solution of such linear systems, and we study some preconditioning techniques to improve the efficiency of these methods. We show some numerical results obtained with two well known Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.  相似文献   

6.
Summary In this paper the convergence analysis of a direct boundary elecment method for the mixed boundary value problem for Laplace equation in a smooth plane domain is given. The method under consideration is based on the collocation solution by constant elements of the corresponding system of boundary integral equations. We prove the convergence of this method, provide asymptotic error estimates for the BEM-solution and give some numerical examples.  相似文献   

7.
We consider the approximation of some highly oscillatory weakly singular surface integrals, arising from boundary integral methods with smooth global basis functions for solving problems of high frequency acoustic scattering by three-dimensional convex obstacles, described globally in spherical coordinates. As the frequency of the incident wave increases, the performance of standard quadrature schemes deteriorates. Naive application of asymptotic schemes also fails due to the weak singularity. We propose here a new scheme based on a combination of an asymptotic approach and exact treatment of singularities in an appropriate coordinate system. For the case of a spherical scatterer we demonstrate via error analysis and numerical results that, provided the observation point is sufficiently far from the shadow boundary, a high level of accuracy can be achieved with a minimal computational cost.  相似文献   

8.
In this paper, we represent a new numerical method for solving the steady-state Stokes equations in an unbounded plane domain. The technique consists in coupling the boundary integral and the finite element methods. An artificial smooth boundary is introduced separating an interior inhomogeneous region from an exterior one. The solution in the exterior domain is represented by an integral equation over the artificial boundary. This integral equation is incorporated into a velocitypressure formulation for the interior region, and a finite element method is used to approximate the resulting variational problem. This is studied by means of an abstract framework, well adapted to the model problem, in which convergence results and optimal error estimates are derived. Computer results will be discussed in a forthcoming paper.  相似文献   

9.
Summary Here we present a fully discretized projection method with Fourier series which is based on a modification of the fast Fourier transform. The method is applied to systems of integro-differential equations with the Cauchy kernel, boundary integral equations from the boundary element method and, more generally, to certain elliptic pseudodifferential equations on closed smooth curves. We use Gaussian quadratures on families of equidistant partitions combined with the fast Fourier transform. This yields an extremely accurate and fast numerical scheme. We present complete asymptotic error estimates including the quadrature errors. These are quasioptimal and of exponential order for analytic data. Numerical experiments for a scattering problem, the clamped plate and plane estatostatics confirm the theoretical convergence rates and show high accuracy.  相似文献   

10.
Summary.   In this paper we establish a error estimation on the boundary for the solution of an exterior Neumann problem in . To solve this problem we consider an integral representation which depends from the solution of a boundary integral equation. We use a full piecewise linear discretisation which on one hand leads to a simple numerical algorithm but on the other hand the error analysis becomes more difficult due to the singularity of the integral kernel. We construct a particular approximation for the solution of the boundary integral equation, for the solution of the Neumann problem and its gradient on the boundary and estimate their error. Received May 11, 1998 / Revised version received July 7, 1999 / Published online August 24, 2000  相似文献   

11.
Summary. Both mixed finite element methods and boundary integral methods are important tools in computational mechanics according to a good stress approximation. Recently, even low order mixed methods of Raviart–Thomas-type became available for problems in elasticity. Since either methods are robust for critical Poisson ratios, it appears natural to couple the two methods as proposed in this paper. The symmetric coupling changes the elliptic part of the bilinear form only. Hence the convergence analysis of mixed finite element methods is applicable to the coupled problem as well. Specifically, we couple boundary elements with a family of mixed elements analyzed by Stenberg. The locking-free implementation is performed via Lagrange multipliers, numerical examples are included. Received February 21, 1995 / Revised version received December 21, 1995  相似文献   

12.
In some applications, one has to deal with the problem of integrating, over a bounded interval, a smooth function taking significant values, with respect to the machine precision or to the accuracy one wants to achieve, only in a very small part of the domain of integration. In this paper, we propose a simple and efficient numerical approach to compute or discretize integrals of this type. We also consider a class of second kind integral equations whose integral operator has the above behavior. Some numerical testing is presented.  相似文献   

13.
This paper is concerned with a heat diffusion problem in a half-space which is motivated by the detection of material defects using thermal measurements. This problem is solved by inverting the Laplace transform with respect to time on a contour in the complex plane using an exponentially convergent quadrature rule. This leads to a finite number of time-independent problems, which can be solved in parallel using boundary integral equation methods. We provide a full numerical analysis of this scheme on compact time intervals. Our results are formulated in a way that they can easily be used for other diffusion problems in exterior or interior domains.  相似文献   

14.
椭圆外区域上Helmholtz问题的自然边界元法   总被引:1,自引:1,他引:0  
张敏  杜其奎 《计算数学》2008,30(1):75-88
本文研究椭圆外区域上Helmholtz方程边值问题的自然边界元法.利用自然边界归化原理,获得该问题的Poisson积分公式及自然积分方程,给出了自然积分方程的数值方法.由于计算的需要,我们详细地讨论了Mathieu函数的计算方法(当0相似文献   

15.
In this paper we use a boundary integral method with single layer potentials to solve a class of Helmholtz transmission problems in the plane. We propose and analyze a novel and very simple quadrature method to solve numerically the equivalent system of integral equations which provides an approximation of the solution of the original problem with linear convergence (quadratic in some special cases). Furthermore, we also investigate a modified quadrature approximation based on the ideas of qualocation methods. This new scheme is again extremely simple to implement and has order three in weak norms.   相似文献   

16.
In this article we compute numerically the Green’s function of the half-plane Helmholtz operator with impedance boundary conditions. A compactly perturbed half-plane Helmholtz problem is used to motivate this calculation, by treating it through integral equation techniques. These require the knowledge of the calculated Green’s function, and lead to a boundary element discretization. The Green’s function is computed using the inverse Fourier operator of its spectral transform, applying an inverse FFT for the regular part, and removing the singularities analytically. Finally, some numerical results for the Green’s function and for a benchmark resonance problem are shown.  相似文献   

17.
Approximation of boundary element matrices   总被引:10,自引:0,他引:10  
Summary. This article considers the problem of approximating a general asymptotically smooth function in two variables, typically arising in integral formulations of boundary value problems, by a sum of products of two functions in one variable. From these results an iterative algorithm for the low-rank approximation of blocks of large unstructured matrices generated by asymptotically smooth functions is developed. This algorithm uses only few entries from the original block and since it has a natural stopping criterion the approximative rank is not needed in advance. Received June 21, 1999 / Revised version received December 6, 1999 / Published online June 8, 2000  相似文献   

18.
Summary. The potential of sparse grid discretizations for solving boundary integral equations is studied for the screen problem on a square in . Theoretical and numerical results on approximation rates, preconditioning, adaptivity and compression for piecewise constant and linear sparse grid spaces are obtained. Received March 17, 1998 / Revised version received September 10, 1998  相似文献   

19.
Here we present the asymptotic error analysis for the boundary element approximation of the direct boundary integral equations for the plane mixed boundary value problem of the Laplacian. The boundary elements are defined by B-splines for the smooth parts of the boundary charges and additional singular functions at the collision points. The asymptotic error estimates include estimates for the stress intensity factors which occur as additional unknowns to be computed within the Galerkin scheme. The numerical analysis is based on the uniqueness of the problem, a coerciveness inequality, the triangular principal part and an extended shift theorem of the boundary integral operators.  相似文献   

20.
Summary Integral operators are nonlocal operators. The operators defined in boundary integral equations to elliptic boundary value problems, however, are pseudo-differential operators on the boundary and, therefore, provide additional pseudolocal properties. These allow the successful application of adaptive procedures to some boundary element methods. In this paper we analyze these methods for general strongly elliptic integral equations and obtain a-posteriori error estimates for boundary element solutions. We also apply these methods to nodal collocation with odd degree splines. Some numerical examples show that these adaptive procedures are reliable and effective.This work was carried out while Dr. De-hao Yu was an Alexander-von-Humboldt-Stiftung research fellow at the University of Stuttgart in 1987, 1988  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号