首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exact penalty approach aims at replacing a constrained optimization problem by an equivalent unconstrained optimization problem. Most results in the literature of exact penalization are mainly concerned with finding conditions under which a solution of the constrained optimization problem is a solution of an unconstrained penalized optimization problem, and the reverse property is rarely studied. In this paper, we study the reverse property. We give the conditions under which the original constrained (single and/or multiobjective) optimization problem and the unconstrained exact penalized problem are exactly equivalent. The main conditions to ensure the exact penalty principle for optimization problems include the global and local error bound conditions. By using variational analysis, these conditions may be characterized by using generalized differentiation.  相似文献   

2.
We consider smooth stochastic programs and develop a discrete-time optimal-control problem for adaptively selecting sample sizes in a class of algorithms based on variable sample average approximations (VSAA). The control problem aims to minimize the expected computational cost to obtain a near-optimal solution of a stochastic program and is solved approximately using dynamic programming. The optimal-control problem depends on unknown parameters such as rate of convergence, computational cost per iteration, and sampling error. Hence, we implement the approach within a receding-horizon framework where parameters are estimated and the optimal-control problem is solved repeatedly during the calculations of a VSAA algorithm. The resulting sample-size selection policy consistently produces near-optimal solutions in short computing times as compared to other plausible policies in several numerical examples.  相似文献   

3.
This article analyzes the performance of metaheuristics on the vehicle routing problem with stochastic demands (VRPSD). The problem is known to have a computationally demanding objective function, which could turn to be infeasible when large instances are considered. Fast approximations of the objective function are therefore appealing because they would allow for an extended exploration of the search space. We explore the hybridization of the metaheuristic by means of two objective functions which are surrogate measures of the exact solution quality. Particularly helpful for some metaheuristics is the objective function derived from the traveling salesman problem (TSP), a closely related problem. In the light of this observation, we analyze possible extensions of the metaheuristics which take the hybridized solution approach VRPSD-TSP even further and report about experimental results on different types of instances. We show that, for the instances tested, two hybridized versions of iterated local search and evolutionary algorithm attain better solutions than state-of-the-art algorithms.  相似文献   

4.
We present a unified framework for the design and convergence analysis of a class of algorithms based on approximate solution of proximal point subproblems. Our development further enhances the constructive approximation approach of the recently proposed hybrid projection–proximal and extragradient–proximal methods. Specifically, we introduce an even more flexible error tolerance criterion, as well as provide a unified view of these two algorithms. Our general method possesses global convergence and local (super)linear rate of convergence under standard assumptions, while using a constructive approximation criterion suitable for a number of specific implementations. For example, we show that close to a regular solution of a monotone system of semismooth equations, two Newton iterations are sufficient to solve the proximal subproblem within the required error tolerance. Such systems of equations arise naturally when reformulating the nonlinear complementarity problem.

  相似文献   

5.
We develop tractable semidefinite programming based approximations for distributionally robust individual and joint chance constraints, assuming that only the first- and second-order moments as well as the support of the uncertain parameters are given. It is known that robust chance constraints can be conservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR) constraints. We first prove that this approximation is exact for robust individual chance constraints with concave or (not necessarily concave) quadratic constraint functions, and we demonstrate that the Worst-Case CVaR can be computed efficiently for these classes of constraint functions. Next, we study the Worst-Case CVaR approximation for joint chance constraints. This approximation affords intuitive dual interpretations and is provably tighter than two popular benchmark approximations. The tightness depends on a set of scaling parameters, which can be tuned via a sequential convex optimization algorithm. We show that the approximation becomes essentially exact when the scaling parameters are chosen optimally and that the Worst-Case CVaR can be evaluated efficiently if the scaling parameters are kept constant. We evaluate our joint chance constraint approximation in the context of a dynamic water reservoir control problem and numerically demonstrate its superiority over the two benchmark approximations.  相似文献   

6.
In this paper we address two major challenges presented by stochastic discrete optimisation problems: the multiobjective nature of the problems, once risk aversion is incorporated, and the frequent difficulties in computing exactly, or even approximately, the objective function. The latter has often been handled with methods involving sample average approximation, where a random sample is generated so that population parameters may be estimated from sample statistics—usually the expected value is estimated from the sample average. We propose the use of multiobjective metaheuristics to deal with these difficulties, and apply a multiobjective local search metaheuristic to both exact and sample approximation versions of a mean-risk static stochastic knapsack problem. Variance and conditional value-at-risk are considered as risk measures. Results of a computational study are presented, that indicate the approach is capable of producing high-quality approximations to the efficient sets, with a modest computational effort.  相似文献   

7.
We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants and are valid for any conforming approximations regardless of the method used for their derivation. It is shown that the structure of error majorant reflects properties of the exact solution so that the majorant vanishes only if an approximate solution coincides with the exact one. Moreover, it possesses necessary continuity properties, so that any sequence of approximations converging to the exact solution in the energy space generates a sequence of positive numbers (explicitly computable by the majorant functional) that tends to zero.   相似文献   

8.
In the single source unsplittable min-cost flow problem, commodities must be routed simultaneously from a common source vertex to certain destination vertices in a given graph with edge capacities and costs; the demand of each commodity must be routed along a single path so that the total flow through any edge is at most its capacity. Moreover, the total cost must not exceed a given budget. This problem has been introduced by Kleinberg [7] and generalizes several NP-complete problems from various areas in combinatorial optimization such as packing, partitioning, scheduling, load balancing, and virtual-circuit routing. Kolliopoulos and Stein [9] and Dinitz, Garg, and Goemans [4] developed algorithms improving the first approximation results of Kleinberg for the problem of minimizing the violation of edge capacities and for other variants. However, known techniques do not seem to be capable of providing solutions without also violating the cost constraint. We give the first approximation results with hard cost constraints. Moreover, all our results dominate the best known bicriteria approximations. Finally, we provide results on the hardness of approximation for several variants of the problem. Received: August 23, 2000 / Accepted: April 20, 2001?Published online October 2, 2001  相似文献   

9.
We consider two numerical solution approaches for the Dym initial value problem using the reproducing kernel Hilbert space method. For each solution approach, the solution is represented in the form of a series contained in the reproducing kernel space, and a truncated approximate solution is obtained. This approximation converges to the exact solution of the Dym problem when a sufficient number of terms are included. In the first approach, we avoid to perform the Gram-Schmidt orthogonalization process on the basis functions, and this will decrease the computational time. Meanwhile, in the second approach, working with orthonormal basis elements gives some numerical advantages, despite the increased computational time. The latter approach also permits a more straightforward convergence analysis. Therefore, there are benefits to both approaches. After developing the reproducing kernel Hilbert space method for the numerical solution of the Dym equation, we present several numerical experiments in order to show that the method is efficient and can provide accurate approximations to the Dym initial value problem for sufficiently regular initial data after relatively few iterations. We present the absolute error of the results when exact solutions are known and residual errors for other cases. The results suggest that numerically solving the Dym initial value problem in reproducing kernel space is a useful approach for obtaining accurate solutions in an efficient manner.  相似文献   

10.
In many instances, the exact evaluation of an objective function and its subgradients can be computationally demanding. By way of example, we cite problems that arise within the context of stochastic optimization, where the objective function is typically defined via multi-dimensional integration. In this paper, we address the solution of such optimization problems by exploring the use of successive approximation schemes within subgradient optimization methods. We refer to this new class of methods as inexact subgradient algorithms. With relatively mild conditions imposed on the approximations, we show that the inexact subgradient algorithms inherit properties associated with their traditional (i.e., exact) counterparts. Within the context of stochastic optimization, the conditions that we impose allow a relaxation of requirements traditionally imposed on steplengths in stochastic quasi-gradient methods. Additionally, we study methods in which steplengths may be defined adaptively, in a manner that reflects the improvement in the objective function approximations as the iterations proceed. We illustrate the applicability of our approach by proposing an inexact subgradient optimization method for the solution of stochastic linear programs.This work was supported by Grant Nos. NSF-DDM-89-10046 and NSF-DDM-9114352 from the National Science Foundation.  相似文献   

11.
van Harten  A.  Sleptchenko  A. 《Queueing Systems》2003,43(4):307-328
Multi-class multi-server queueing problems are a generalisation of the well-known M/M/k queue to arrival processes with clients of N types that require exponentially distributed service with different average service times. In this paper, we give a procedure to construct exact solutions of the stationary state equations using the special structure of these equations. Essential in this procedure is the reduction of a part of the problem to a backward second order difference equation with constant coefficients. It follows that the exact solution can be found by eigenmode decomposition. In general eigenmodes do not have a simple product structure as one might expect intuitively. Further, using the exact solution, all kinds of interesting performance measures can be computed and compared with heuristic approximations (insofar available in the literature). We provide some new approximations based on special multiplicative eigenmodes, including the dominant mode in the heavy traffic limit. We illustrate our methods with numerical results. It turns out that our approximation method is better for higher moments than some other approximations known in the literature. Moreover, we demonstrate that our theory is useful to applications where correlation between items plays a role, such as spare parts management.  相似文献   

12.
1.IntroductionManyproblemsarisinginfluidmechanicsaregiveninanunboundeddomain,suchasfluidflowaroundobstacles.Whencomputingthenumericalsolutionsoftheseproblems,oneoftenintroducesartificialboundariesandsetsupaxtificialboundaryconditionsonthem.Thentheoriginal…  相似文献   

13.
14.
This paper concerns the application of reformulation techniques in mathematical programming to a specific problem arising in quantum chemistry, namely the solution of Hartree-Fock systems of equations, which describe atomic and molecular electronic wave functions based on the minimization of a functional of the energy. Their traditional solution method does not provide a guarantee of global optimality and its output depends on a provided initial starting point. We formulate this problem as a multi-extremal nonconvex polynomial programming problem, and solve it with a spatial Branch-and-Bound algorithm for global optimization. The lower bounds at each node are provided by reformulating the problem in such a way that its convex relaxation is tight. The validity of the proposed approach was established by successfully computing the ground-state of the helium and beryllium atoms.  相似文献   

15.
In this paper, we consider a class of nonlinear dynamic systems with terminal state and continuous inequality constraints. Our aim is to design an optimal feedback controller that minimizes total system cost and ensures satisfaction of all constraints. We first formulate this problem as a semi-infinite optimization problem. We then show that by using a new exact penalty approach, this semi-infinite optimization problem can be converted into a sequence of nonlinear programming problems, each of which can be solved using standard gradient-based optimization methods. We conclude the paper by discussing applications of our work to glider control.  相似文献   

16.
We present a new approach to the a posteriori error analysis of stable Galerkin approximations of reaction–convection–diffusion problems. It relies upon a non-standard variational formulation of the exact problem, based on the anisotropic wavelet decomposition of the equation residual into convection-dominated scales and diffusion-dominated scales. The associated norm, which is stronger than the standard energy norm, provides a robust (i.e., uniform in the convection limit) control over the streamline derivative of the solution. We propose an upper estimator and a lower estimator of the error, in this norm, between the exact solution and any finite dimensional approximation of it. We investigate the behaviour of such estimators, both theoretically and through numerical experiments. As an output of our analysis, we find that the lower estimator is quantitatively accurate and robust.  相似文献   

17.
Second-order necessary conditions and sufficient conditions for optimality in nonsmooth vector optimization problems with inclusion constraints are established. We use approximations as generalized derivatives and avoid even continuity assumptions. Convexity conditions are not imposed explicitly. Not all approximations in use are required to be bounded. The results improve or include several recent existing ones. Examples are provided to show that our theorems are easily applied in situations where several known results do not work.  相似文献   

18.
We study the well-posedness of an initial-boundary value problem corresponding to the zeroth approximation of I. Vekua's hierarchical models for elastic cusped prismatic shells. The mathematical model is described by a two-dimensional order-degenerating hyperbolic system. We formulate the problem in the weak setting and prove the uniqueness and existence theorems. We show that the sequence of corresponding explicit Galerkin approximations converges to the exact solution in an appropriate weighted Lebesgue space.  相似文献   

19.
Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimization problems in the literature. In this paper, we propose a Newton-type algorithm for solving a class of monotone affine variational inequality problems (AVIPs for short). In the proposed algorithm, the techniques based on both the generalized Newton method and the smoothing Newton method are used. In particular, we show that the algorithm can find an exact solution of the AVIP in a finite number of iterations under an assumption that the solution set of the AVIP is nonempty. Preliminary numerical results are reported.  相似文献   

20.
Determining whether a solution is of high quality (optimal or near optimal) is fundamental in optimization theory and algorithms. In this paper, we develop Monte Carlo sampling-based procedures for assessing solution quality in stochastic programs. Quality is defined via the optimality gap and our procedures' output is a confidence interval on this gap. We review a multiple-replications procedure that requires solution of, say, 30 optimization problems and then, we present a result that justifies a computationally simplified single-replication procedure that only requires solving one optimization problem. Even though the single replication procedure is computationally significantly less demanding, the resulting confidence interval might have low coverage probability for small sample sizes for some problems. We provide variants of this procedure that require two replications instead of one and that perform better empirically. We present computational results for a newsvendor problem and for two-stage stochastic linear programs from the literature. We also discuss when the procedures perform well and when they fail, and we propose using ɛ-optimal solutions to strengthen the performance of our procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号