首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
The fractional Merchant viscoelastic model is introduced to simulate the viscoelasticity of soil skeleton in this study. According to the elastic-viscoelastic correspondence principle, elastic parameters including shear modulus Gv, horizontal elastic modulus Eh and vertical elastic modulus Ev are replaced by the reciprocal of the flexibility coefficient of viscoelastic media in the Laplace transformed domain. Then, based on the precise integration solutions of multilayered cross-anisotropic elastic saturated soils, 3-D solutions of viscoelastic saturated soils are derived. The final solutions in the physical domain are obtained by the Laplace numerical inversion. The correctness of theories and programs is verified by comparing the numerical results with existing references. Sensitivity analyses are conducted to investigate the effects of viscoelastic parameters, cross-anisotropic parameters and stratification of soils on time-dependent displacement and excess pore water pressure.  相似文献   

2.
The flow through porous media can be better described by fractional models than the classical ones since they include inherently memory effects caused by obstacles in the structures. The variational iteration method was extended to find approximate solutions of fractional differential equations with the Caputo derivatives, but the Lagrange multipliers of the method were not identified explicitly. In this paper, the Lagrange multiplier is determined in a more accurate way and some new variational iteration formulae are presented.  相似文献   

3.
In this paper, the fractional variational integrators developed by Wang and Xiao (2012) [28] are extended to the fractional Euler–Lagrange (E–L) equations with holonomic constraints. The corresponding fractional discrete E–L equations are derived, and their local convergence is discussed. Some fractional variational integrators are presented. The suggested methods are shown to be efficient by some numerical examples.  相似文献   

4.
In this paper, the time fractional partial differential equations are investigated by means of the homotopy analysis method. This technique is extended to study the partial differential equations of fractal order for the first time. The accurate series solutions are obtained. This indicates the validity and great potential of the homotopy analysis method for solving nonlinear fractional partial differential equations.  相似文献   

5.
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.  相似文献   

6.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
We study a class of degenerate convection-diffusion equations with a fractional non-linear diffusion term. This class is a new, but natural, generalization of local degenerate convection-diffusion equations, and include anomalous diffusion equations, fractional conservation laws, fractional porous medium equations, and new fractional degenerate equations as special cases. We define weak entropy solutions and prove well-posedness under weak regularity assumptions on the solutions, e.g. uniqueness is obtained in the class of bounded integrable solutions. Then we introduce a new monotone conservative numerical scheme and prove convergence toward the entropy solution in the class of bounded integrable BV functions. The well-posedness results are then extended to non-local terms based on general Lévy operators, connections to some fully non-linear HJB equations are established, and finally, some numerical experiments are included to give the reader an idea about the qualitative behavior of solutions of these new equations.  相似文献   

8.
This paper presents an analytical layer-element solution to non-axisymmetric consolidation of multilayered poroelastic materials with anisotropic permeability and compressible constituents. By applying Fourier expansions, Hankel transforms and Laplace transforms to the state variables involved in the governing equations of poroelasticity with respect to the circumferential, radial and time coordinates, respectively, the analytical layer-element (i.e. a symmetric stiffness matrix) is derived, which describes the relationship between the transformed generalized stresses and displacements at the surface (z = 0) and those at an arbitrary depth z, considering the corresponding boundary and continuity conditions at the layer interfaces, the global stiffness matrix of a multilayered system is assembled in the transformed domain. The actual solutions in the physical domain are acquired by applying numerical quadrature schemes for the inversion of the Laplace–Hankel transform. Finally, numerical calculation is presented to investigate the influence of layering and poroelastic material parameters on consolidation process.  相似文献   

9.
本文研究了无粘不可压慢扩张旋转流的稳定性问题,采用多重尺度展开法对有慢扩张的旋转流的非对称扰动进行浅化稳定性研究,导出了零阶及一阶扰动模所应满足的微分方程及由于慢扩张引起振幅变化的控制方程,将Plaschko关于慢扩张喷流的结果推广到具有慢扩张的旋转流情况。  相似文献   

10.
11.
Nonexistence results for a class of two‐times differential equations with fractional derivatives of orders between zero and one are presented. Furthermore, the result is extended to a two‐times system of two differential equations with fractional derivatives of orders between zero and one.  相似文献   

12.
In this paper, we apply the homotopy analysis method (HAM) to solve the fractional Volterra’s model for population growth of a species in a closed system. This technique is extended to give solutions for nonlinear fractional integro–differential equations. The whole HAM solution procedure for nonlinear fractional differential equations is established. Further, the accurate analytical approximations are obtained for the first time, which are valid and convergent for all time t. This indicates the validity and great potential of the homotopy analysis method for solving nonlinear fractional integro–differential equations.  相似文献   

13.
基于Sherief等提出的分数阶广义热弹性耦合理论,研究了在热冲击作用下二维纤维增强弹性体的热弹性问题.考虑了重力对二维纤维增强线性热弹性各向同性介质的影响,建立了控制方程.运用正则模态法,经过数值计算,对控制方程进行求解,得到了不同分数阶参数和不同重力场下无量纲温度、位移和应力分量的表达式,以图形的方式展示了变量的分布规律并对结果展开了讨论.研究结果为:重力场和分数阶参数对纤维增强介质的位移及应力有着重要的影响,但对温度的影响有限.  相似文献   

14.
Using energy methods, we prove some power-law and exponential decay estimates for classical and nonlocal evolutionary equations. The results obtained are framed into a general setting, which comprise, among the others, equations involving both standard and Caputo time-derivative, complex valued magnetic operators, fractional porous media equations and nonlocal Kirchhoff operators.Both local and fractional space diffusion are taken into account, possibly in a nonlinear setting. The different quantitative behaviours, which distinguish polynomial decays from exponential ones, depend heavily on the structure of the time-derivative involved in the equation.  相似文献   

15.
《Applied Mathematical Modelling》2014,38(15-16):3871-3878
The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–time dependent variable coefficient. In this paper, a two-sided space fractional diffusion model with a space–time dependent variable coefficient and a nonlinear source term subject to zero Dirichlet boundary conditions is considered.Some finite volume methods to solve a fractional differential equation with a constant dispersion coefficient have been proposed. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann–Liouville fractional derivatives at control volume faces in terms of function values at the nodes. However, these finite volume methods have not been extended to two-dimensional and three-dimensional problems in a natural manner. In this paper, a new weighted fractional finite volume method with a nonlocal operator (using nodal basis functions) for solving this two-sided space fractional diffusion equation is proposed. Some numerical results for the Crank–Nicholson fractional finite volume method are given to show the stability, consistency and convergence of our computational approach. This novel simulation technique provides excellent tools for practical problems even when a complex transition zone is involved. This technique can be extend to two-dimensional and three-dimensional problems with complex regions.  相似文献   

16.
Some exact solutions to the first, second and extended Stefan problems with fractional time derivative described in the Caputo sense are given by means of fractional Green's function and Wright function in this paper. By the aid of simple calculations, many results of differential equations of integer order can be obtained as special cases of the results given by this paper.  相似文献   

17.
This article is concerned with ?‐methods for delay parabolic partial differential equations. The methodology is extended to time‐fractional‐order parabolic partial differential equations in the sense of Caputo. The fully implicit scheme preserves delay‐independent asymptotic stability and the solution continuously depends on the time‐fractional order. Several numerical examples of interest are included to demonstrate the effectiveness of the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

18.
This paper is concerned with establishing necessary or sufficient conditions for the existence of solutions to evolution equations with fractional derivatives in space and time. The Fujita exponent is determined. Then, these results are extended to systems of reaction-diffusion equations. Our new results shed lights on important practical questions.  相似文献   

19.
In this article, the homotopy analysis method is applied to solve nonlinear fractional partial differential equations. On the basis of the homotopy analysis method, a scheme is developed to obtain the approximate solution of the fractional KdV, K(2,2), Burgers, BBM‐Burgers, cubic Boussinesq, coupled KdV, and Boussinesq‐like B(m,n) equations with initial conditions, which are introduced by replacing some integer‐order time derivatives by fractional derivatives. The homotopy analysis method for partial differential equations of integer‐order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions of the studied models are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号