首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The limiting state of a multilayer eccentric ring made of a nonlinearly elastic material and subjected to a uniform external pressure is investigated. The topicality and importance of the problem are connected with the search for reserves of savings in materials, with a simultaneous in crease in the load-carrying capacity of structures. Since rings often must have walls of varying thickness, their critical buckling force is determined as a function of a parameter considering this fact. In solving the problem, the geometric nonlinearity is also taken into account. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 761–770, November–December, 2007.  相似文献   

2.
The buckling of a long multilayered nonlinearly elastic shell made of different materials and subject to the action of external pressure is investigated. The load is not hydrostatic and greatly varies in value and direction. Neglecting the effect of end fastening of the shell, the problem is reduced to an analysis of the loss of load-carrying ability of a ring of unit width separated from the shell. The solution is based on a variational method of mixed type formulated for heterogeneous nonlinearly elastic bodies, taking into account the geometrical nonlinearity, in a combination with the Rayleigh–Ritz method. The initial analysis is reduced to solving the Cauchy problem for a nonlinear ordinary differential equation resolved for the derivative. Numerically, using the Runge–Kutta method, the effect of the number of layers and of the parameter of nonuniformity of the external pressure on the critical buckling force is revealed. The urgency and importance of the problem are connected with the research of reserves in the saving of materials with a simultaneous possibility of increasing the load-carrying ability of a structure.  相似文献   

3.
The loss of the load-carrying capacity of a nonlinearly elastic multilayer rod is investigated. The rod, whose layers have various thickness and are made of different materials, is rigidly fixed at both its ends. Rigid contact conditions between the layers are assumed. The problem posed is solved by using the variational method of mixed type in combination with the Rayleigh-Ritz method. The initial analysis is reduced to the solution of the Cauchy problem for a nonlinear ordinary differential equation solved for the first derivative. As the initial condition, the maximum initial eccentricity of the rod is assumed. In the case of zero eccentricity, the Shanley critical force for an axially compressed rod is determined. For a three-layer rod whose outer layers have equal thickness and are made of the same material, numerically, for various degrees of nonlinearity, the effect of physicomechanical and geometric parameters on the critical load of buckling instability is determined. It is found that, by matching the heterogeneity of the rod, it is possible to raise its load-carrying capacity. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 3, pp. 347–360, May–June, 2006.  相似文献   

4.
A method for calculating the buckling stability of layered cylindrical shells made of composite materials with one plane of symmetry of mechanical characteristics is worked out. As a special case, shells made of fibrous materials by winding in directions not coinciding with coordinate axes are considered. An analysis of stability of shells under an axial compression, external pressure, and torsion is carried out. It is shown that, at a great number of layers and appropriate reinforcing angles, the shells can be considered orthotropic. The solution to the problem of the initial postbuckling behavior of shells made of composites with one plane of symmetry is also obtained. It is found that shells of this type can be less sensitive to geometrical imperfections. This fact is important from the practical point of view. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 43, No. 2, pp. 213–236, March–April, 2007.  相似文献   

5.
The problem of a thin spherical linearly elastic shell perfectlybonded to an infinite linearly elastic medium is considered.A constant axisymmetric stress field is applied at infinityin the matrix, and the displacement and stress fields in theshell and matrix are evaluated by means of harmonic potentialfunctions. In order to examine the stability of this solution,the buckling problem of a shell which experiences this deformationis considered. Using Koiter's nonlinear shallow shell theory,restricting buckling patterns to those which are axisymmetricand using the Rayleigh–Ritz method by expanding the bucklingpatterns in an infinite series of Legendre functions, an eigenvalueproblem for the coefficients in the infinite series is determined.This system is truncated and solved numerically in order toanalyse the behaviour of the shell as it undergoes bucklingand to identify the critical buckling stress in two cases, namely,where the shell is hollow and the stress at infinity is eitheruniaxial or radial.  相似文献   

6.
The stability of a multilayered linearly viscoelastic cylindrical shell with a varying wall thickness under the action of uniformly distributed lateral pressure is investigated. Assuming that the shell is sufficiently long and neglecting the influence of its fastening, the problem posed is reduced to the examination of stability of a compressed ring. The urgency and importance of such problems are connected with the search for reserves of saving of materials with simultaneously increasing the bearing capacity of the structure. In solving problems of this class, the geometric nonlinearity must also be taken into account. The acquisition of efficient analytical solutions here is a rather difficult and sometimes impossible task. This is connected with the integration of nonlinear boundary-value problems with discontinuous coefficients. Therefore, to avoid the existing mathematical obstacles, the problem is solved by using a variational method of mixed type in combination with the Rayleigh–Ritz method. For a three-layer ring with a symmetric structure relative to its median surface, the effect of various geometrically nonlinear theories and of the varying wall thickness on the critical time of stability is revealed numerically.  相似文献   

7.
Buckling analysis of a thin cylindrical shell stiffened by rings with T-shaped cross section under the action of uniform internal pressure in the shell is performed. An annular plate stiffened over the outer edge by a circular beam is used as the ring model. The classical ring model, which is a beam with a T-shaped cross section, is inappropriate in this problem, since in the case of the loss of stability, buckling deformations are localized on the ring surface. The beam model does not allow one to find the critical pressure that corresponds to such a loss of stability. In the first approximation, the problem of the loss of stability of the annular plate connected with the shell is reduced to solving the boundary value problem for finding eigenvalues of the annular plate bending equation. Approximate formulas for determining critical pressure are obtained under the assumption that the plate width is much smaller than its inner radius. The results found using the Rayleigh method and the shooting method differ slightly from each other. It has been demonstrated that the critical pressure for rings with rectangular cross section is higher than that for rings with a T-shaped cross section.  相似文献   

8.
Within the frame work of the three-dimensional linearized theory of stability of deformable bodies (TLTSDB), the near-surface buckling instability of a system consisting of a half-plane (substrate), a viscoelastic bond layer, and an elastic covering layer is suggested. The equations of the TLTSDB are obtained from the three-dimensional geometrically non linear equations of viscoelasticity theory by using the boundary-form perturbation technique. By employing the Laplace transform, a method for solving the problem is developed. It is supposed that the covering layer has an insignificant initial imperfection. The stability of the system is considered lost if the imperfection starts to increase and grows indefinitely. Numerical results for the critical compressive force and the critical time are presented. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 4, pp. 517–530, July–August, 2006.  相似文献   

9.
Within the framework of a piecewise homogenous body model and with the use of a three-dimensional linearized theory of stability (TLTS), the local near-surface buckling of a material system consisting of a viscoelastic (elastic) half-plane, an elastic (viscoelastic) bond layer, and a viscoelastic (elastic) covering layer is investigated. A plane-strain state is considered, and it is assumed that the near-surface buckling instability is caused by the evolution of a local initial curving (imperfection) of the elastic layer with time or with an external compressive force at fixed instants of time. The equations of TLTS are obtained from the three-dimensional geometrically nonlinear equations of the theory of viscoelasticity by using the boundary-form perturbation technique. A method for solving the problems considered by employing the Laplace and Fourier transformations is developed. It is supposed that the aforementioned elastic layer has an insignificant initial local imperfection, and the stability is lost if this imperfection starts to grow infinitely. Numerical results on the critical compressive force and the critical time are presented. The influence of rheological parameters of the viscoelastic materials on the critical time is investigated. The viscoelasticity of the materials is described by the Rabotnov fractional-exponential operator. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 771–788, November–December, 2007.  相似文献   

10.
The minimization of the weight of ribbed viscoelastic composite cylindrical shells under a long-term external pressure is considered. The shells are strengthened with six inner stiffening rings with identical geometric parameters and a square cross section. It is assumed that the shell material obeys the linear law of hereditary creep and the displacements across the shell wall are distributed according to the Timoshenko hypothesis. The shell must withstand an external pressure of –0.5 MPa without the loss of stability for an unlimited time. The parameters of optimization are the intensity of reinforcement and thickness of its covering and the height and width of the stiffening rings. It is found that the weight of an optimum ribbed shell is 24% lower than that of an optimum cylindrical shell without ribs.  相似文献   

11.
The solution of the stability problem of a circular sandwich ring under uniform external pressure is given in a refined statement. The need to determinate the precritical stresses in load-bearing layers in the refined statement with regard to the transverse compression of the core is established, which is the basis for the detection of the mixed flexural buckling forms (BFs) with more than two half-waves along the circumferential coordinate (n>2). It is found that sandwich structures with a determining parameter of transverse compression corresponding to the limit of transition from the mixed BFs to synphasic ones are the most efficient from the weight viewpoint. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 317–328, May–June, 2000.  相似文献   

12.
The nonlinear buckling behavior of a 3D-braided composite cylindrical shell of finite length subjected to internal pressure in thermal environments is considered. According to a new micromacromechanical model, a 3D-braided composite may be treated as a cell system where the geometry of each cell strongly depends on its position in the cross section of the cylindrical shell. The material properties of the epoxy matrix are expressed as linear functions of temperature. The governing equations are based on Reddy’s higher-order shear deformation theory of shells with a von Karman–Donnell-type kinematic nonlinearity and include thermal effects. The singular perturbation technique is employed to determine the buckling pressure and the postbuckling equilibrium paths of the shell.  相似文献   

13.
球壳的环向剪切屈曲   总被引:2,自引:0,他引:2  
通过球壳微元初始屈曲的微分几何分析,推导出一组新的精确的屈曲分支方程,并且应用Galerkin变分法研究铰支球壳承受环向剪切力时的整体稳定性,构造了接近分支点变形状态的屈曲模式,首次求得了从扁球壳到半球壳大范围内的扭转屈曲临界特征值,临界荷载强度和临界应力.  相似文献   

14.
A postbuckling analysis is presented for a shear-deformable anisotropic laminated cylindrical shell of finite length subjected to external pressure in thermal environments. The material properties are expressed as linear functions of temperature. The governing equations are based on Reddy’s higher-order shear-deformation shell theory with the von Karman-Donnell-type kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. The boundary-layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling region, and the initial geometric imperfections of the shell, is extended to the case of shear-deformable anisotropic laminated cylindrical shells under lateral or hydrostatic pressure in thermal environments. The singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The results obtained show that the variation in temperature, layer setting, and the geometric parameters of such shells have a significant influence on their buckling load and postbuckling behavior. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 789–822, November–December, 2007.  相似文献   

15.
The problem of the optimal design of a composite shell in creep is formulated. The progressive buckling of a cross-wound reinforced cylindrical shell supported on a viscoelastic core is considered as a particular case. The reinforcement structure and shell thickness corresponding to minimum weight for a given load and service life are found.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 442–446, May–June, 1975.  相似文献   

16.
A solution to the problem on the stability according to the flexural buckling mode is given for a cylindrical sandwich shell with a transversely soft core of arbitrary thickness. The shell is under the action of a temperature field inhomogeneous across the thickness, and its end faces are fastened in such a way (in the axial direction, the face sections of the external layer are fixed, but of the internal one are free) that an inhomogeneous subcritical stress-strain state arises in the shell across the thickness of its layers. It is shown that, under such conditions, the buckling mode of the shell is mixed flexural. To reveal and investigate this mode, equations of subcritical equilibrium and stability of a corresponding degree of accuracy are needed.Translated from Mekhanika Kompozitnykh Materialov, Vol. 40, No. 6, pp. 715–730, November–December, 2004.  相似文献   

17.
The creep buckling of polyethylene cylindrical shells in axial compression has been investigated. The changes in the shape of the shell surface up to loss of stability were measured with a special radial deflection gauge. The experimentally determined shape of the buckled surface at discrete moments of time is approximated by a double Fourier series. The characteristic coefficients of the series of importance in creep buckling are established. From an analysis of the coefficients of the series it follows that the amplitudes of the axisymmetric coefficients diminish with time, while those of the coefficients giving a nonaxisymmetric buckled shape grow.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 2, pp. 269–274, March–April, 1971.  相似文献   

18.
The stability problem is solved for cylindrical shells made of a laminated composite whose directions of layer reinforcement are not aligned with coordinate axes of the shell midsurface. Each layer of the composite is modeled by an anisotropic material with one plane of symmetry. The resolving functions of the mixed variant of shell theory are approximated by trigonometric series satisfying boundary conditions. The stability of the shells under axial compression, external pressure, and torsion is investigated. A comparison with calculation data obtained within the framework of an orthotropic body model is carried out. It is shown that this model leads to considerably erroneous critical loads for some structures of the composites. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 5, pp. 651–662, September–October, 2005.  相似文献   

19.
This paper is concerned with the elastic buckling of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations, the equilibrium and stability equations are derived using the Sander’s assumption. Resulting equations are employed to obtain the closed-form solution for the critical buckling loads. The results show that the inhomogeneity parameter and geometry of shell significantly affect the critical buckling loads. The analytical results are compared and validated using the finite element method.  相似文献   

20.
The plane problem of three-dimensional stability is solved for a transversely compressed composite material reinforced with ribbons taking into account the inhomogeneous initial state. An approximate solution of the problems is based on the net method. The effect of the ribbon form factor, the ratio between the elastic moduli of the matrix and filler, and Poisson ratio of the filler on the critical deformation of the material is investigated. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 1, pp. 77–86, January–February, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号