首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, the inverse problem of finding the time‐dependent coefficient of heat capacity together with the solution of heat equation with nonlocal boundary and overdetermination conditions is considered. The existence, uniqueness and continuous dependence upon the data are studied. Some considerations on the numerical solution for this inverse problem are presented with the examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the inverse problem of finding the time‐dependent coefficient of heat capacity together with the solution periodic boundary and integral overdetermination conditions is considered. Under some natural regularity and consistency conditions on the input data, the existence, uniqueness, and continuous dependence upon the data of the solution are shown. Some considerations on the numerical solution for this inverse problem are presented with an example. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The inverse problem of determining a spacewise dependent heat source, together with the initial temperature for the parabolic heat equation, using the usual conditions of the direct problem and information from two supplementary temperature measurements at different instants of time is studied. These spacewise dependent temperature measurements ensure that this inverse problem has a unique solution, despite the solution being unstable, hence the problem is ill-posed. We propose an iterative algorithm for the stable reconstruction of both the initial data and the source based on a sequence of well-posed direct problems for the parabolic heat equation, which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterations at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented for a typical benchmark test example, which has the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure gives accurate numerical approximations in relatively few iterations.  相似文献   

4.
The aim of this article is to study the parabolic inverse problem of determination of the leading coefficient in the heat equation with an extra condition at the terminal. After introducing a new variable, we reformulate the problem as a nonclassical parabolic equation along with the initial and boundary conditions. The uniqueness and continuous dependence of the solution upon the data are demonstrated, and then finite difference methods, backward Euler and Crank–Nicolson schemes are studied. The results of some numerical examples are presented to demonstrate the efficiency and the rapid convergence of the methods. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

5.
For the first time, the inverse Sturm–Liouville problem with nonseparated boundary conditions is studied on a star-shaped geometric graph with three edges. It is shown that the Sturm–Liouville problem with general boundary conditions cannot be uniquely reconstructed from four spectra. Nonseparated boundary conditions are found for which a uniqueness theorem for the solution of the inverse Sturm–Liouville problem is proved. The spectrum of the boundary value problem itself and the spectra of three auxiliary problems are used as reconstruction data. It is also shown that the Sturm–Liouville problem with these nonseparated boundary conditions can be uniquely recovered if three spectra of auxiliary problems are used as reconstruction data and only five of its eigenvalues are used instead of the entire spectrum of the problem.  相似文献   

6.
We study the reconstruction of the missing thermal and mechanical data on an inaccessible part of the boundary in the case of two‐dimensional linear isotropic thermoelastic materials from overprescribed noisy measurements taken on the remaining accessible boundary part. This inverse problem is solved by using the method of fundamental solutions together with the method of particular solutions. The stabilization of this inverse problem is achieved using several singular value decomposition (SVD)‐based regularization methods, such as the Tikhonov regularization method (Tikhonov and Arsenin, Methods for solving ill‐posed problems, Nauka, Moscow, 1986), the damped SVD and the truncated SVD (Hansen, Rank‐deficient and discrete ill‐posed problems: numerical aspects of linear inversion, SIAM, Philadelphia, 1998), whilst the optimal regularization parameter is selected according to the discrepancy principle (Morozov, Sov Math Doklady 7 (1966), 414–417), generalized cross‐validation criterion (Golub et al. Technometrics 22 (1979), 1–35) and Hansen's L‐curve method (Hansen and O'Leary, SIAM J Sci Comput 14 (1993), 1487–503). © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 168–201, 2015  相似文献   

7.
We consider a problem of modeling the thermal diffusion process in a closed metal wire wrapped around a thin sheet of insulation material. The layer of insulation is assumed to be slightly permeable. Therefore, the temperature value from one side affects the diffusion process on the other side. For this reason, the standard heat equation is modified, and a third term with an involution is added. Modeling of this process leads to the consideration of an inverse problem for a one‐dimensional fractional evolution equation with involution and with periodic boundary conditions with respect to a space variable. This equation interpolates heat equation. Such equations are also called nonlocal subdiffusion equations or nonlocal heat equations. The inverse problem consists in the restoration (simultaneously with the solution) of the unknown right‐hand side of the equation, which depends only on the spatial variable. The conditions for overdefinition are initial and final states. Existence and uniqueness results for the given problem are obtained via the method of separation of variables.  相似文献   

8.
This paper investigates the inverse problem of finding a time-dependent heat source in a parabolic equation with nonlocal boundary and integral overdetermination conditions. Under some natural regularity and consistency conditions on the input data the existence, uniqueness and continuously dependence upon the data of the solution are shown by using the generalized Fourier method. Numerical tests using the Crank-Nicolson finite difference scheme combined with an iterative method are presented and discussed.  相似文献   

9.
This paper has focused on unknown functions identification in nonlinear boundary conditions of an inverse problem of a time‐fractional reaction–diffusion–convection equation. This inverse problem is generally ill‐posed in the sense of stability, that is, the solution of problem does not depend continuously on the input data. Thus, a combination of the mollification regularization method with Gauss kernel and a finite difference marching scheme will be introduced to solve this problem. The generalized cross‐validation choice rule is applied to find a suitable regularization parameter. The stability and convergence of the numerical method are investigated. Finally, two numerical examples are provided to test the effectiveness and validity of the proposed approach.  相似文献   

10.
In this paper,the authors discuss an inverse boundary problem for the axi- symmetric steady-state heat equation,which arises in monitoring the boundary corrosion for the blast-furnace.Measure temperature at some locations are used to identify the shape of the corrosion boundary. The numerical inversion is complicated and consuming since the wear-line varies during the process and the boundary in the heat problem is not fixed.The authors suggest a method that the unknown boundary can be represented by a given curve plus a small perturbation,then the equation can be solved with fixed boundary,and a lot of computing time will be saved. A method is given to solve the inverse problem by minimizing the sum of the squared residual at the measuring locations,in which the direct problems are solved by axi- symmetric fundamental solution method. The numerical results are in good agreement with test model data as well as industrial data,even in severe corrosion case.  相似文献   

11.
An inverse source problem for the recovery of an unknown space–time dependent source term of a time-fractional Burgers equation is solved in the paper. By using the prescribed boundary data, a sequence of boundary functions is derived, which together with the zero element constitute a linear space. An energy boundary functional equation is derived in the linear space, of which the time-dependent energy is preserved for each energy boundary function. The iterative algorithm used to recover the unknown source with energy boundary functions as the bases is developed, which is robust and convergent fast.  相似文献   

12.
The inverse problem of determining a spacewise-dependent heatsource for the parabolic heat equation using the usual conditionsof the direct problem and information from one supplementarytemperature measurement at a given instant of time is studied.This spacewise-dependent temperature measurement ensures thatthis inverse problem has a unique solution, but the solutionis unstable and hence the problem is ill-posed. We propose avariational conjugate gradient-type iterative algorithm forthe stable reconstruction of the heat source based on a sequenceof well-posed direct problems for the parabolic heat equationwhich are solved at each iteration step using the boundary elementmethod. The instability is overcome by stopping the iterativeprocedure at the first iteration for which the discrepancy principleis satisfied. Numerical results are presented which have theinput measured data perturbed by increasing amounts of randomnoise. The numerical results show that the proposed procedureyields stable and accurate numerical approximations after onlya few iterations.  相似文献   

13.
The paper deals with the Sturm–Liouville eigenvalue problem with the Dirichlet boundary condition at one end of the interval and with the boundary condition containing entire functions of the spectral parameter at the other end. We study the inverse problem, which consists in recovering the potential from a part of the spectrum. This inverse problem generalizes partial inverse problems on finite intervals and on graphs and also the inverse transmission eigenvalue problem. We obtain sufficient conditions for global solvability of the studied inverse problem, which prove its local solvability and stability. In addition, application of our main results to the partial inverse Sturm–Liouville problem on the star-shaped graph is provided.  相似文献   

14.
Direct and inverse boundary value problems for models of stationary reaction–convection–diffusion are investigated. The direct problem consists in finding a solution of the corresponding boundary value problem for given data on the boundary of the domain of the independent variable. The peculiarity of the direct problem consists in the inhomogeneity and irregularity of mixed boundary data. Solvability and stability conditions are specified for the direct problem. The inverse boundary value problem consists in finding some traces of the solution of the corresponding boundary value problem for given standard and additional data on a certain part of the boundary of the domain of the independent variable. The peculiarity of the inverse problem consists in its ill-posedness. Regularizing methods and solution algorithms are developed for the inverse problem.  相似文献   

15.
This article deals with trace operators on anisotropic Lizorkin–Triebel spaces with mixed norms over cylindrical domains with smooth boundary. As a preparation we include a rather self‐contained exposition of Lizorkin–Triebel spaces on manifolds and extend these results to mixed‐norm Lizorkin–Triebel spaces on cylinders in Euclidean space. In addition Rychkov's universal extension operator for a half space is shown to be bounded with respect to the mixed norms, and a support preserving right‐inverse of the trace is given explicitly and proved to be continuous in the scale of mixed‐norm Lizorkin–Triebel spaces. As an application, the heat equation is considered in these spaces, and the necessary compatibility conditions on the data are deduced.  相似文献   

16.
The material and shape derivative method is used for an inverse problem in thermal imaging. The goal is to identify the boundary of unknown inclusions inside an object by applying a heat source and measuring the induced temperature near the boundary of the sample. The problem is studied in the framework of quasilinear elliptic equations. The explicit form is derived of the equations that are satisfied by material and shape derivatives. The existence of weak material derivative is proved. These general findings are demonstrated on the steepest descent optimization procedure. Simulations involving the level set method for tracing the interface are performed for several materials with nonlinear heat conductivity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, an inverse boundary value problem for a two-dimensional hyperbolic equation with overdetermination conditions is studied. To investigate the solvability of the original problem, we first consider an auxiliary inverse boundary value problem and prove its equivalence to the original problem in a certain sense. We then use the Fourier method to reduce such an equivalent problem to a system of integral equations. Furthermore, we prove the existence and uniqueness theorem for the auxiliary problem by the contraction mappings principle. Based on the equivalency of these problems, the existence and uniqueness theorem for the classical solution of the original inverse problem is proved. Some discussions on the numerical solutions for this inverse problem are presented including some numerical examples.  相似文献   

18.
This paper deals with an inverse problem of determining the diffusion coefficient, spacewise dependent source term, and the initial value simultaneously for a one‐dimensional heat equation based on the boundary control, boundary measurement, and temperature distribution at a given single instant in time. By a Dirichlet series representation for the boundary observation, the identification of the diffusion coefficient and initial value can be transformed into a spectral estimation problem of an exponential series with measurement error, which is solved by the matrix pencil method. For the identification of the source term, a finite difference approximation method in conjunction with the truncated singular value decomposition is adopted, where the regularization parameter is determined by the generalized cross‐validation criterion. Numerical simulations are performed to verify the result of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract The authors consider one specific kind of heat transfer problems in a threedimensional layered domain, with nonlinear Stefan-Boltzmann conditions on the boundaries as well as on the interfaces. To determine the unknown part of the boundary (or corrosion) by the Cauchy data on the reachable part is an important inverse problem in engineering. The mathematical model of this problem is introduced, the well-posedness of the forward problems and the uniqueness of the inverse problems are obtained.  相似文献   

20.
In this article, we discuss the application of two important numerical methods, Ritz–Galerkin and Method of Fundamental Solutions (MFS), for solving some inverse problems, arising in the context of two‐dimensional elliptic equations. The main incentive for studying the considered problems is their wide applications in engineering fields. In the previous literature, the use of these methods, particularly MFS for right hand side reconstruction has been limited, partly due to stability concerns. We demonstrate that these diculties may be surmounted if the aforementioned methods are combined with techniques such as dual reciprocity method(DRM). Moreover, we incorporate some iterative regularization techniques. This fact is especially veried by taking into account the noisy data with boundary conditions. In addition, parts of this article are dedicated to the problem of boundary data approximation and the issue of numerical stability, ending with a general discussion on the advantages and disadvantages of various methods. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1995–2026, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号