首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
In this paper, the homotopy analysis method (HAM) has been employed to obtain analytical solution of a two reaction–diffusion systems of fractional order (fractional Schnakenberg systems) which has been modeling morphogen systems in developmental biology. Different from all other analytic methods, HAM provides us with a simple way to adjust and control the convergence region of solution series by choosing proper values for auxiliary parameter h. The fractional derivative is described in the Caputo sense. The reason of using fractional order differential equations (FOD) is that FOD are naturally related to systems with memory which exists in most biological systems. Also they are closely related to fractals which are abundant in biological systems. The results derived of the fractional system are of a more general nature. Respectively, solutions of FOD spread at a faster rate than the classical differential equations, and may exhibit asymmetry. However, the fundamental solutions of these equations still exhibit useful scaling properties that make them attractive for applications.  相似文献   

2.
In recent work on the area of approximation methods for the solution of nonlinear differential equations, it has been suggested that the so-called generalized Taylor series approach is equivalent to the homotopy analysis method (HAM). In the present paper, we demonstrate that such a view is only valid in very special cases, and in general, the HAM is far more robust. In particular, the equivalence is only valid when the solution is represented as a power series in the independent variable. As has been shown many times, alternative basis functions can greatly improve the error properties of homotopy solutions, and when the base functions are not polynomials or power functions, we no longer have that the generalized Taylor series approach is equivalent to the HAM. In particular, the HAM can be used to obtain solutions which are global (defined on the whole domain) rather than local (defined on some restriction of the domain). The HAM can also be used to obtain non-analytic solutions, which by their nature can not be expressed through the generalized Taylor series approach. We demonstrate these properties of the HAM by consideration of an example where the generalizes Taylor series must always have a finite radius of convergence (and hence limited applicability), while the homotopy solution is valid over the entire infinite domain. We then give a second example for which the exact solution is not analytic, and hence, it will not agree with the generalized Taylor series over the domain. Doing so, we show that the generalized Taylor series approach is not as robust as the HAM, and hence, the HAM is more general. Such results have important implications for how iterative solutions are calculated when approximating solutions to nonlinear differential equations.  相似文献   

3.
In this work, the homotopy analysis method (HAM) is applied to obtain the explicit analytical solutions for system of the Jaulent–Miodek equations. The validity of the method is verified by comparing the approximation series solutions with the exact solutions. Unlike perturbation methods, the HAM does not depend on any small physical parameters at all. Thus, it is valid for both weakly and strongly nonlinear problems. Besides, different from all other analytic techniques, the HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter ?. Briefly speaking, this work verifies the validity and the potential of the HAM for the study of nonlinear systems. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

4.
In this paper, the homotopy analysis method (HAM) is presented to obtain the numerical solutions for the two kinds of the Painlevé equations with a number of initial conditions. Then, a numerical evaluation and comparison with the results obtained via the HAM are included. It illustrates the validity and the great potential of the HAM in solving Painlevé equations. Although the HAM contains the auxiliary parameter, the convergence region of the series solution can be controlled in a simple way. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, by means of the homotopy analysis method (HAM), the solutions of some Schrodinger equations are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter ?, that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear and nonlinear examples to obtain the exact solutions. HAM is a powerful and easy-to-use analytic tool for nonlinear problems.  相似文献   

6.
The similarity solution for the unsteady laminar incompressible boundary layer flow of a viscous electrically conducting fluid in stagnation point region of an impulsively rotating and translating sphere with a magnetic field and a buoyancy force gives a system of non-linear partial differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the homotopy analysis method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the magnetic parameter, buoyancy parameter and rotation parameter on the surface shear stresses and surface heat transfer. It is noted that the behavior of the HAM solution for the surface shear stresses and surface heat transfer is in good agreement with the numerical solution given in reference [H. S. Takhar, A. J. Chamkha, G. Nath, Unsteady laminar MHD flow and heat transfer in the stagnation region of an impulsively spinning and translating sphere in the presence of buoyancy forces, Heat Mass Transfer 37 (2001) 397].  相似文献   

7.
This paper aims to present complete analytic solution to heat transfer of a micropolar fluid through a porous medium with radiation. Homotopy analysis method (HAM) has been used to get accurate and complete analytic solution. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. The velocity and temperature profiles are shown and the influence of coupling constant, permeability parameter and the radiation parameter on the heat transfer is discussed in detail. The validity of our solutions is verified by the numerical results (fourth-order Runge–Kutta method and shooting method).  相似文献   

8.
The natural convection boundary layer flow modeled by a system of nonlinear differential equations is considered. By means of similarity transformation, the non-linear partial differential equations are reduced to a system of two coupled ordinary differential equations. The series solutions of coupled system of equations are constructed for velocity and temperature using homotopy analysis method (HAM). Convergence of the obtained series solution is discussed. Finally some figures are illustrated to show the accuracy of the applied method and assessment of various prandtl numbers on the temperature and the velocity is undertaken.  相似文献   

9.
In this paper, approximate and/or exact analytical solutions of singular initial value problems (IVPs) of the Emden–Fowler type in the second-order ordinary differential equations (ODEs) are obtained by the homotopy analysis method (HAM). The HAM solutions contain an auxiliary parameter which provides a convenient way of controlling the convergence region of the series solutions. It is shown that the solutions obtained by the Adomian decomposition method (ADM) and the homotopy-perturbation method (HPM) are only special cases of the HAM solutions.  相似文献   

10.
This attempt presents the series solution of second Painlevé equation by homotopy analysis method (HAM). Comparison of HAM solution is provided with that of the Adomian decomposition method (ADM), homotopy perturbation method (HPM), analytic continuation method, and Legendre Tau method. It is revealed that there is very good agreement between the analytic continuation and HAM solutions when compared with ADM, HPM, and Legendre Tau solutions. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号