首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
We consider stochastic discrete optimization problems where the decision variables are nonnegative integers and propose a generalized surrogate problem methodology that modifies and extends previous work in Ref. 1. Our approach is based on an online control scheme which transforms the problem into a surrogate continuous optimization problem and proceeds to solve the latter using standard gradient-based approaches while simultaneously updating both the actual and surrogate system states. In contrast to Ref. 1, the proposed methodology applies to arbitrary constraint sets. It is shown that, under certain conditions, the solution of the original problem is recovered from the optimal surrogate state. Applications of this approach include solutions to multicommodity resource allocation problems; in these problems, exploiting the convergence speed of the method, one can overcome the obstacle posed by the presence of local optima.  相似文献   

2.
In this short note, our aim is to investigate the inverse problem of parameter identification in quasi-variational inequalities. We develop an abstract nonsmooth regularization approach that subsumes the total variation regularization and permits the identification of discontinuous parameters. We study the inverse problem in an optimization setting using the output-least squares formulation. We prove the existence of a global minimizer and give convergence results for the considered optimization problem. We also discretize the identification problem for quasi-variational inequalities and provide the convergence analysis for the discrete problem. We give an application to the gradient obstacle problem.  相似文献   

3.
We propose an exact solution approach for solving nonlinear multi-objective optimization problems with separable discrete variables and a single constraint. The approach converts the multi-objective problem into a single objective problem by using surrogate multipliers from which we find all the solutions with objective values within a given range. We call this the surrogate target problem which is solved by using an algorithm based on the modular approach. Computational experiments demonstrate the effectiveness of this approach in solving large-scale problems. A simple example is presented to illustrate an interactive decision making process.  相似文献   

4.
Simultaneous generalized hill climbing (SGHC) algorithms provide a framework for using heuristics to simultaneously address sets of intractable discrete optimization problems where information is shared between the problems during the algorithm execution. Many well-known heuristics can be embedded within the SGHC algorithm framework. This paper shows that the solutions generated by an SGHC algorithm are a stochastic process that satisfies the Markov property. This allows problem probability mass functions to be formulated for particular sets of problems based on the long-term behavior of the algorithm. Such results can be used to determine the proportion of iterations that an SGHC algorithm will spend optimizing over each discrete optimization problem. Sufficient conditions that guarantee that the algorithm spends an equal number of iterations in each discrete optimization problem are provided. SGHC algorithms can also be formulated such that the overall performance of the algorithm is independent of the initial discrete optimization problem chosen. Sufficient conditions are obtained guaranteeing that an SGHC algorithm will visit the globally optimal solution for each discrete optimization problem. Lastly, rates of convergence for SGHC algorithms are reported that show that given a rate of convergence for the embedded GHC algorithm, the SGHC algorithm can be designed to preserve this rate.  相似文献   

5.
We present a new methodology to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). Typically these problems include an upper planning-level optimization with some discrete decision variables (eg, build/don’t build) as well as a lower operations-level problem often described by an optimization or nonlinear complementarity problem. This lower-level problem may also include some discrete variables. MPECs are very challenging problems to solve and the inclusion of integrality constraints makes this class of problems even more computationally difficult. We develop a new variant of the Benders algorithm combined with a heuristic procedure that decomposes the domain of the upper-level discrete variables to solve the resulting DC-MPECs. We provide convergence theory as well as a number of numerical examples, some derived from energy applications, to validate the new method. It should be noted that the convergence theory applies if the heuristic procedure correctly identifies a decomposition of the domain so that the lower-level problem's optimal value function is convex. This is challenging but our numerical results are positive.  相似文献   

6.
The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.  相似文献   

7.
In this paper, we consider an optimal control problem in which the control takes values from a discrete set and the state and control are subject to continuous inequality constraints. By introducing auxiliary controls and applying a time-scaling transformation, we transform this optimal control problem into an equivalent problem subject to additional linear and quadratic constraints. The feasible region defined by these additional constraints is disconnected, and thus standard optimization methods struggle to handle these constraints. We introduce a novel exact penalty function to penalize constraint violations, and then append this penalty function to the objective. This leads to an approximate optimal control problem that can be solved using standard software packages such as MISER. Convergence results show that when the penalty parameter is sufficiently large, any local solution of the approximate problem is also a local solution of the original problem. We conclude the paper with some numerical results for two difficult train control problems.  相似文献   

8.
We propose an alternating direction method of multipliers (ADMM) for solving the state constrained optimization problems governed by elliptic equations. The unconstrained as well as box-constrained cases of the Dirichlet boundary control, Robin boundary control, and right-hand side control problems are considered here. These continuous optimization problems are transformed into discrete optimization problems by the finite element method discretization, then are solved by ADMM. The ADMM is an efficient first order algorithm with global convergence, which combines the decomposability of dual ascent with the superior convergence properties of the method of multipliers. We shall present exhaustive convergence analysis of ADMM for these different type optimization problems. The numerical experiments are performed to verify the efficiency of the method.  相似文献   

9.
In this paper, we consider the problem of minimum-norm control of the double integrator with bilateral inequality constraints for the output. We approximate the constraints by piecewise linear functions and prove that the Langrange multipliers associated with the state constraints of the approximating problem are discrete measures, concentrated in at most two points in every interval of discretization. This allows us to reduce the problem to a convex finite-dimensional optimization problem. An algorithm based on this reduction is proposed and its convergence is examined. Numerical examples illustrate our approach. We also discuss regularity properties of the optimal control for a higher-dimensional state-constrained linear regulator problem.The first author was supported by the National Science Foundation, Grant No. DMS-9404431. The second author was supported by a François-Xavier Bagnoud Doctoral Fellowship and by NSF Grants DMS-9404431 and MSS-9114630.  相似文献   

10.
In this paper, we consider an optimal control problem of switched systems with input and state constraints. Since the complexity of such constraint and switching laws, it is difficult to solve the problem using standard optimization techniques. In addition, although conjugate gradient algorithms are very useful for solving nonlinear optimization problem, in practical implementations, the existing Wolfe condition may never be satisfied due to the existence of numerical errors. And the mode insertion technique only leads to suboptimal solutions, due to only certain mode insertions being considered. Thus, based on an improved conjugate gradient algorithm and a discrete filled function method, an improved bi-level algorithm is proposed to solve this optimization problem. Convergence results indicate that the proposed algorithm is globally convergent. Three numerical examples are solved to illustrate the proposed algorithm converges faster and yields a better cost function value than existing bi-level algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号