首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate Klein-Gordon equation with cubic nonlinearity. All explicit expressions of the bounded travelling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded travelling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.  相似文献   

2.
The subinertial internal Kelvin wave solutions of a linearized system of the ocean dynamics equations for a semi-infinite two-layer f-plane model basin of constant depth bordering a straight, vertical coast are imposed. A rigid lid surface condition and no-slip wall boundary condition are imposed. Some trapped wave equations are presented and approximate solutions using an asymptotic method are constructed. In the absence of bottom friction, the solution consists of a frictionally modified Kelvin wave and a vertical viscous boundary layer. With a no-slip bottom boundary condition, the solution consists of a modified Kelvin wave, two vertical viscous boundary layers, and a large cross-section scale component. The numerical solutions for Kelvin waves are obtained for model parameters that take account of a joint effect of lateral viscosity, bottom friction, and friction between the layers.  相似文献   

3.
In this paper, a high efficient computational approach, the extended Legendre orthogonal polynomial method (LOPM) is provided to investigate the reflection and transmission of elastic waves in orthotropic couple-stress layered plates sandwiched between two elastic half-spaces. In this approach, the anisotropic couple-stress theory is introduced into the LOPM to calculate the reflection and transmission coefficients of the orthotropic interlayers. The stress components, couple-stress components, rotation vectors and governing equations are derived in terms of the Legendre orthogonal polynomial. The present method does not require calculations of the displacement solutions of each partial wave in anisotropic multilayered microstructures, but expands the displacement vector of each layer into a Legendre orthogonal polynomial series with the expansion coefficients to be calculated. The incident P wave and SH wave are calculated, respectively. The effects of length scale parameters in three different directions are studied. It is found that the reflection and transmission coefficients of the incident P wave are only related to the length scale parameter in the z direction. For incident SH wave, the influence of the length scale parameter along the thickness direction is much more significant than that of the length scale parameter in the y direction.  相似文献   

4.
5.
We consider a BBM(mn) equation which is a generalization of the celebrated Benjamin-Bona-Mahony equation with generalized evolution term. By using two solitary wave ansatze in terms of sechp(x) and tanhp(x) functions, we find exact analytical bright and dark soliton solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The conditions of existence of solitons are presented. Note that, it is always useful and desirable to construct exact analytical solutions especially soliton-type envelope for the understanding of most nonlinear physical phenomena.  相似文献   

6.
We obtain a blow-up result for solutions to a semi-linear wave equation with scale-invariant dissipation and mass and power non-linearity, in the case in which the model has a “wave like” behavior. We perform a change of variables that transforms our starting equation in a strictly hyperbolic semi-linear wave equation with time-dependent speed of propagation. Applying Kato's lemma we prove a blow-up result for solutions to the transformed equation under some assumptions on the initial data. The limit case, that is, when the exponent p is exactly equal to the upper bound of the range of admissible values of p yielding blow-up needs special considerations. In this critical case an explicit integral representation formula for solutions of the corresponding linear Cauchy problem in 1d is derived. Finally, carrying out the inverse change of variables we get a non-existence result for global (in time) solutions to the original model.  相似文献   

7.
Variable coefficient and Wick-type stochastic nonlinear Schrödinger (NLS) equations are investigated. By using white noise analysis, Hermite transform and extended F-expansion method, we obtain a number of Wick versions of periodic-like wave solutions and periodic wave solutions expressed by various Jacobi elliptic functions for Wick-type stochastic and variable coefficient NLS equations, respectively. In the limit cases, the soliton-like wave solutions are showed as well. Since Wick versions of functions are usually difficult to evaluate, we get some nonWick versions of the solutions for Wick-type stochastic NLS equations in special cases.  相似文献   

8.
We consider a generalized Fitzhugh–Nagumo equation exhibiting time-varying coefficients and linear dispersion term. By means of specific solitary wave ansatz and the tanh method, a new variety of soliton solutions are derived. The physical parameters in the soliton solutions are obtained as function of the time-dependent model coefficients. The conditions of existence and uniqueness of solitons are presented. These solutions may be useful to explain the nonlinear dynamics of waves in an inhomogeneous media that is described by the variable coefficients Fitzhugh–Nagumo equation. Clearly, adaptive methods are straightforward and concise and their applications for the Fitzhugh–Nagumo equation with t-dependent coefficients enable one to construct soliton-like solutions.  相似文献   

9.
In this Letter, we study (2 + 1)-dimensional soliton equation by using the bifurcation theory of planar dynamical systems. Following a dynamical system approach, in different parameter regions, we depict phase portraits of a travelling wave system. Bell profile solitary wave solutions, kink profile solitary wave solutions and periodic travelling wave solutions are given. Further, we present the relations between the bounded travelling wave solutions and the energy level h. Through discussing the energy level h, we obtain all explicit formulas of solitary wave solutions and periodic wave solutions.  相似文献   

10.
An approach, which allows us to construct specific closed-form solitary wave solutions for the KdV-like water-wave models obtained through the Boussinesq perturbation expansion for the two-dimensional water wave problem in the limit of long wavelength/small amplitude waves, is developed. The models are relevant to the case of the bi-directional waves with the amplitude of the left-moving wave of O(ϵ) (ϵ is the amplitude parameter) as compared with that of the right-moving wave. We show that, in such a case, the Boussinesq system can be decomposed into a system of coupled equations for the right- and left-moving waves in which, to any order of the expansion, one of the equations is dependent only on the (main) right-wave elevation and takes the form of the high-order KdV equation with arbitrary coefficients whereas the second equation includes both elevations. Then the explicit solitary wave solutions constructed via our approach may be treated as the exact solutions of the infinite-order perturbed KdV equations for the right-moving wave with the properly specified high-order coefficients. Such solutions include, in a sense, contributions of all orders of the asymptotic expansion and therefore may be considered to a certain degree as modelling the solutions of the original water wave problem under proper initial conditions. Those solitary waves, although stemming from the KdV solitary waves, possess features found neither in the KdV solitons nor in the solutions of the first order perturbed KdV equations.  相似文献   

11.
This paper deals with entire solutions and the interaction of traveling wave fronts of bistable reaction-advection-diffusion equation with infinite cylinders. Assume that the equation admits three equilibria: two stable equilibria 0 and 1, and an unstable equilibrium θ. It is well known that there are different wave fronts connecting any two of those three equilibria. By considering a combination of any two of those different traveling wave fronts and constructing appropriate subsolutions and supersolutions, we establish three different types of entire solutions. Finally, we analyze a model for shear flows in cylinders to illustrate our main results.  相似文献   

12.
This paper is concerned with the traveling wave solutions and the spreading speeds for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, which is motivated by an age-structured population model with time delay. We first prove the existence of traveling wave solution with critical wave speed c = c*. By introducing two auxiliary monotone birth functions and using a fluctuation method, we further show that the number c = c* is also the spreading speed of the corresponding initial value problem with compact support. Then, the nonexistence of traveling wave solutions for c < c* is established. Finally, by means of the (technical) weighted energy method, we prove that the traveling wave with large speed is exponentially stable, when the initial perturbation around the wave is relatively small in a weighted norm.  相似文献   

13.
The time-delayed Burgers-Fisher equation is very important model to forest fire, population growth, Neolithic transitions, the interaction between the reaction mechanism, convection effect and diffusion transport, etc. In this paper, the solitary wave solutions of the generalized time-delayed Burgers-Fisher equation with positive fractional power terms are derived with the aid of a subsidiary high-order ODE, and the solitary wave solutions of the special type of generalized time-delayed Burgers-Fisher equation are presented. From the expressions of the solitary wave solutions, it is easy to obtain how the time-delayed constant τ works upon soliton velocity and width of the soliton, and these exact solutions are very important to understand the physical mechanism of the phenomena described by the time-delayed Burgers-Fisher equation.  相似文献   

14.
The motion of Korteweg fluids is governed by the Euler-Korteweg model, which admits planar solitary waves for nonmonotone pressure laws such as the van der Waals law below critical temperature. In an earlier work with Danchin, Descombes and Jamet, it was shown by variational arguments and numerical computations that some of these solitary waves are stable in one space dimension. The purpose here is to study their stability with respect to transverse perturbations in several space dimensions. By Evans functions techniques and Rouché's theorem, it is shown that transverse perturbations of large wave length always destabilize solitary waves in the Euler-Korteweg model, whereas energy estimates show that perturbations of short wave length tend to stabilize them.  相似文献   

15.
Dynamic Green's function plays an important role in the study of various wave radiation, scattering and soil-structure interaction problems. However, little research has been done on the response of transversely isotropic saturated layered media. In this paper, the 3D dynamic responses of a multi-layered transversely isotropic saturated half-space subjected to concentrated forces and pore pressure are investigated. First, utilizing Fourier expansion in circumferential direction accompanied by Hankel integral transform in radial direction, the wave equations for transversely isotropic saturated medium in cylindrical coordinate system are solved. Next, with the aid of the exact dynamic stiffness matrix for in-plane and out-of-plane motions, the solutions for multi-layered transversely isotropic saturated half-space under concentrated forces and pore pressure are obtained by direct stiffness method. A FORTRAN computer code is developed to achieve numerical evaluation of the proposed method, and its accuracy is validated through comparison with existing solutions that are special cases of the more general problems addressed. In addition, selected numerical results for a homogeneous and a layered material model are performed to illustrate the effects of material anisotropy, load frequency, drainage condition and layering on the dynamic responses. The presented solutions form a complete set of Green's functions for concentrated forces (including horizontal load in x(y)-direction, vertical load in z-direction) as well as pore pressure, which lays the foundation for further exploring wave propagation of complex local site in a layered transversely isotropic saturated half-space by using the BEMs.  相似文献   

16.
The double Sine-Gordon equation (DSG) with arbitrary constant coefficients is studied by F-expansion method, which can be thought of as an over-all generalization of the Jacobi elliptic function expansion since F here stands for every one of the Jacobi elliptic functions (even other functions). We first derive three kinds of the generic solutions of the DSG as well as the generic solutions of the Sine-Gordon equation (SG), then in terms of Appendix A, many exact periodic wave solutions, solitary wave solutions and trigonometric function solutions of the DSG are separated from its generic solutions. The corresponding results of the SG, which is a special case of the DSG, can also be obtained.  相似文献   

17.
This paper is concerned with several aspects of travelling wave solutions for a (N+1) dimensional potential KdV equation. The Weierstrass elliptic function solutions, the Jaccobi elliptic function solutions, solitary wave solutions, periodic wave solutions to the equation are acquired under certain circumstances. It is shown that the coefficients of derivative terms in the equation cause the qualitative changes of physical structures of the solutions.  相似文献   

18.
For a supersonic Euler flow past a straight-sided wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L1 well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope function has small total variation, when the total variation of the incoming flow is small. In this case, the Lipschitz wedge perturbs the flow, and the waves reflect after interacting with the strong shock-front and the wedge boundary. We first obtain the existence of solutions in BV when the incoming flow has small total variation by the wave front tracking method and then establish the L1 stability of the solutions with respect to the incoming flows. In particular, we incorporate the nonlinear waves generated from the wedge boundary to develop a Lyapunov functional between two solutions containing strong shock-fronts, which is equivalent to the L1 norm, and prove that the functional decreases in the flow direction. Then the L1 stability is established, so is the uniqueness of the solutions by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of viscosity solutions, is also obtained.  相似文献   

19.
Generalized forms of exact solitary wave solutions of the class (1.1) are investigated. The analysis rests mainly on the standard a direct algebraic method. The most general solutions are obtained, possibly having a constant term in their expansion into real exponentials. These solutions of the class (1.1) are performed under certain conditions for the relationship between the coefficients of the nonlinear, dispersive and dissipative terms. The analytical solutions of this class are of pulse-type and of kink-type solitary wave solutions and they are obtained with an arbitrary constant phase shift.  相似文献   

20.
In this paper, we construct a new mixed function method for the first time. By using this new method, we study the two nonlinear differential-difference equations named the generalized Hybrid lattice and two-component Volterra lattice equations. Some new exact solutions of mixed function type such as discrete solitary wave solutions, discrete kink and anti-kink wave solutions and discrete breather solutions with kink and anti-kink character are obtained and their dynamic properties are also discussed. By using software Mathematica, we show their profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号