首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文利用单裂纹扭转的位错型解答,使用有限部积分的概念和方法,最后将含有单根水平裂纹的柱体扭转问题归为解一个强奇性积分方程,并为其建立了数值求解方法,文末作了若干数值例子的计算,结果令人满意.  相似文献   

2.
研究含任意曲线裂纹的复合圆柱体的Saint-Venant扭转,将内外材料的交界面视为一边界,将问题划归为内、外边界和裂纹上的积分方程的求解.提出了新的边界元数值方法,分别对含有直线裂纹和曲折裂纹的典型问题进行了数值计算,并与文献中数据结果进行了比较,证明了该文方法的正确性和有效性.  相似文献   

3.
本文采用Muskhclishvili弹性力学的复变函数和边界配位方法对不同形状孔口双边裂纹问题进行了研究,计算了圆孔、椭圆孔、矩形孔、菱形孔等不同形状孔口双边裂纹,以及Ⅰ型和复合型等不同类型断裂试件的应力强度因子,本文方法简单方便,精度较高,与某些已有计算结果的问题比较,本文方法所得的结果是令人满意的.同时,本方法可以应用于不同几何形状和加载条件下的孔口双边裂纹有限大板的计算,是解这一类问题的一致有效方法.  相似文献   

4.
预制V型裂纹尖端应力强度因子的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文提出了爆炸载荷作用下预制V型裂纹的复变应力函数,并用Westergaard方法推导了预制V型裂纹尖端的应力场和位移场,从而得到了V型裂纹尖端的应力强度因子.爆破试验结果表明了公式的正确性.  相似文献   

5.
使用单裂纹解及调和函数的常规解,裂纹柱受横向力作用而引起的Saint-Venant弯曲问题,被归为解两组积分方程,并获得了一般解。在此基础上,对横截面不为薄壁但扭转刚度很小的裂纹柱,提出了一种计算弯曲中心和应力强度因子的方法,给出了一些数值算例。  相似文献   

6.
基于各向异性材料力学,研究了无限大各向异性材料中Ⅲ型裂纹的动态扩展问题.裂纹尖端的应力和位移被表示为解析函数的形式,解析函数可以表达为幂级数的形式,幂级数的系数由边界条件确定.确定了Ⅲ型裂纹的动态应力强度因子的表达式,得到了裂纹尖端的应力分量、应变分量和位移分量.裂纹扩展特性由裂纹扩展速度M和参数alpha反映,裂纹扩展越快,裂纹尖端的应力分量和位移分量越大;参数alpha对裂纹尖端的应力分量和位移分量有重要影响.  相似文献   

7.
本文采用“局部-整体分析法”处理了含表面裂纹三维体断裂分析问题,获得了含表面裂纹三维体裂纹尖端应力应变场包括Ⅰ,Ⅱ,Ⅲ型的一般解。在此基础上构造了高阶三维奇异元,计算了含表面裂纹平板应力强度因子,探讨了不同板厚、不同板宽对应力强度因子的影响并给出相应的曲线。还在中型计算机上成功地进行了三维有限元断裂分析,并以较少的自由度获得较高的计算精度。  相似文献   

8.
本文分析了无界弹性体中含一半无限裂纹,在裂纹面上受一对距离裂纹尖端为L的冲击集中载荷作用的三维应力强度因子历史,求得了Ⅰ型应力强度因子的精确解,求解方法基于积分变换法、Wiener-Hopf技术以及Cagniard-de Hoop变换的直接应用,由于问题包含一特征长度L,在以前被认为是难以解决的。本文还讨论了解的某些性质并给出了数值结果。  相似文献   

9.
李亚  易志坚  王敏  苏康 《应用数学和力学》2020,41(10):1083-1091
采用应力强度因子的裂纹线求解方法,对裂纹面局部均布荷载作用下的Ⅰ型裂纹有限宽板应力强度因子进行了解析求解.其思路是:直接利用无限宽板裂纹问题应力场的解析解,求得应力分量在裂纹线上的形式,通过合理的修正,提出修正后的应力场在裂纹线应满足的条件;进而求解应力强度因子,得出了有限宽板对相应无限宽板的应力强度因子修正系数.当板宽趋于无限大时,得到的应力强度因子与相应的无限宽裂纹板的解答一致.  相似文献   

10.
本文研究了两个材半限弹性的接合面附近存在与接合面平行的双裂纹,并承受剪切冲击时的瞬态应力,运用付里叶(Fourier)和拉普拉斯(Laplace)变换,将问题归结为求解二元积分方程,求解时将裂纹所在面上,下的位移差展成级数,并让其自动满足裂纹面外的位移差为零的条件,利用裂纹面上的边界条件和施密特(Schmidt)方法求解级数中的待定系数,在拉普拉斯像空间中,求得动应力强度因子,并将其数值地逆变换至  相似文献   

11.
本以裂纹的翘曲位移间断为基本未知函数,把带裂纹圆柱体的扭转问题化为求解一组强奇性积分方程,并利用数值法,对星形及其不同形状裂纹圆柱体的抗扭刚度和应力强度因子作了数值计算,计算结果令人满意。  相似文献   

12.
利用有限部积分的概念,导出了三维无限接合体中多个界面裂纹,在任意载荷作用下的超奇异微积分方程组.数值分析中,未知的位移间断采用基本分布函数和多项式乘积的形式来近似,其中基本分布函数是根据界面裂纹应力的振荡奇异性来选取的.作为典型算例,研究了存在两个矩形界面裂纹时,裂纹之间距离、裂纹形状及双材料弹性常数对应力强度因子的影响.计算表明,应力强度因子随裂纹间的距离的增大而减小.  相似文献   

13.
利用复变函数方法和积分方程理论研究了既含有圆形孔口又含有水平裂纹的无限大平面的平面弹性问题,将复杂的解析函数的边值问题化成了求解只在裂纹上的奇异积分方程的问题.此外,还给出了裂纹尖端附近的应力场和应力强度因子的公式.  相似文献   

14.
Based on the photoelasticity method, the behavior of stress intensity factors (SIFs) near cracks propagating from the edges of openings in plates made of elastic and linearly viscoelastic fibrous composite materials is studied. It is found that the relative value of the SIF, K 1/K 1 0 (K 1 0=0c), near the crack tips on the edges of openings in composite plates is a function of the ratio c/R, whose numerical values depend on the mechanical properties of materials of the plates. Using the quasi-elastic method for solving the viscoelastic problems, the effect of viscoelastic properties of the plate material on the value of K 1/K 1 0 is estimated. It is shown that the values of the function K 1(t)/>/K 1 0 near the cracks on the opening edges in plates made of linearly viscoelastic fibrous composites grow under creep.  相似文献   

15.
含曲线裂纹圆柱扭转问题的新边界元法   总被引:4,自引:0,他引:4       下载免费PDF全文
研究含曲线裂纹圆柱的Saint-Venant扭转,将问题化归为裂纹上边界积分方程的求解.利用裂纹尖端的奇异元和线性元插值模型,给出了扭转刚度和应力强度因子的边界元计算公式.对圆弧裂纹、曲折裂纹以及直线裂纹的典型问题进行了数值计算,并与用Gauss-Chebyshev求积法计算的直裂纹情形结果进行了比较,证明了方法的有效性和正确性.  相似文献   

16.
17.
    
The accuracy of standard boundary element methods for elliptic boundary value problems deteriorates if the boundary of the domain contains corners or if the boundary conditions change along the boundary. Here we first investigate the convergence behaviour of standard spline Galerkin approximation on quasi-uniform meshes for boundary integral equations on polygonal domains. It turns out, that the order of convergence depends on some constant describing the singular behaviour of solutions near corner points of the boundary. In order to recover the full order of convergence for the Galerkin approximation we propose the dual singular function method which is often used for improving the accuracy of finite element methods. The theoretical convergence results are confirmed and illustrated by a numerical example.  相似文献   

18.
This paper presents an efficient method of solving Queen's linearized equations for steady plane flow of an incompressible, viscous Newtonian fluid past a cylindrical body of arbitrary cross-section. The numerical solution technique is the well known direct boundary element method. Use of a fundamental solution of Oseen's equations, the ‘Oseenlet’, allows the problem to be reduced to boundary integrals and numerical solution then only requires boundary discretization. The formulation and solution method are validated by computing the net forces acting on a single circular cylinder, two equal but separated circular cylinders and a single elliptic cylinder, and comparing these with other published results. A boundary element representation of the full Navier-Stokes equations is also used to evaluate the drag acting on a single circular cylinder by matching with the numerical Oseen solution in the far field.  相似文献   

19.
The influence of initial tension or compression along cracks on the stress intensity factor (SIF) at crack tips under the action of additional normal forces on crack edges is studied for infinite bodies. A strip made of a composite material is considered. The strip ends are simply supported, and the strip contains a crack whose edges are parallel to its face planes. The strip is first stretched or compressed along crack edges, and then additional uniformly distributed normal forces are applied to the crack edges. The influence of the initial tension (compression) on the SIF caused by the additional normal forces is studied. The corresponding boundary-value problems are modelled with the use of the three-dimensional linearized theory of elasticity. All the investigations are carried out numerically by employing the finite-element method. The values of SIF are calculated by the energy release method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号