首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inoue constructed the first examples of smooth minimal complex surfaces of general type with \(p_g=0\) and \(K^2=7\). These surfaces are finite Galois covers of the 4-nodal cubic surface with the Galois group, the Klein group \(\mathbb {Z}_2\times \mathbb {Z}_2\). For such a surface S, the bicanonical map of S has degree 2 and it is composed with exactly one involution in the Galois group. The divisorial part of the fixed locus of this involution consists of two irreducible components: one is a genus 3 curve with self-intersection number 0 and the other is a genus 2 curve with self-intersection number \(-\,1\). Conversely, assume that S is a smooth minimal complex surface of general type with \(p_g=0\), \(K^2=7\) and having an involution \(\sigma \). We show that, if the divisorial part of the fixed locus of \(\sigma \) consists of two irreducible components \(R_1\) and \(R_2\), with \(g(R_1)=3, R_1^2=0, g(R_2)=2\) and \(R_2^2=-\,1\), then the Klein group \(\mathbb {Z}_2\times \mathbb {Z}_2\) acts faithfully on S and S is indeed an Inoue surface.  相似文献   

2.
Let \(R_{k}\) denote the polynomial residue ring \(F_{2^m}[u]/\langle u^{k} \rangle \), where \(2^{j-1}+1\le k\le 2^{j}\) for some positive integer \(j\). Motivated by the work in [1], we introduce a new Gray map from \(R_{k}\) to \(F_{2^m}^{2^{j}}\). It is proved that the Gray image of a linear \((1+u)\) constacyclic code of an arbitrary length \(N\) over \(R_{k}\) is a distance invariant linear cyclic code of length \(2^{j}N\) over \(F_{2^m}\). Moreover, the generator polynomial of the Gray image of such a constacyclic code is determined, and some optimal linear cyclic codes over \(F_{2}\) and \(F_{4}\) are constructed under this Gray map.  相似文献   

3.
For \(n\ge 1\), the nth Ramanujan prime is defined as the least positive integer \(R_{n}\) such that for all \(x\ge R_{n}\), the interval \((\frac{x}{2}, x]\) has at least n primes. Let \(p_{i}\) be the ith prime and \(R_{n}=p_{s}\). Sondow, Laishram, and other scholars gave a series of upper bounds of s. In this paper we establish several results giving estimates of upper and lower bounds of Ramanujan primes. Using these estimates, we discuss a conjecture on Ramanujan primes of Sondow–Nicholson–Noe and prove that if \(n>10^{300}\), then \(\pi (R_{mn})\le m\pi (R_{n})\) for \(m\ge 1\).  相似文献   

4.
Let \(R\) be a prime ring, \(L\) a noncentral Lie ideal of \(R\), \(F\) a generalized derivation with associated nonzero derivation \(d\) of \(R\). If \(a\in R\) such that \(a(d(u)^{l_1} F(u)^{l_2} d(u)^{l_3} F(u)^{l_4} \ldots F(u)^{l_k})^{n}=0\) for all \(u\in L\), where \(l_1,l_2,\ldots ,l_k\) are fixed non negative integers not all are zero and \(n\) is a fixed integer, then either \(a=0\) or \(R\) satisfies \(s_4\), the standard identity in four variables.  相似文献   

5.
The total space \({\mathfrak M} \approx {\mathbb H}_1 \times S^1\) of the canonical circle bundle over the 3-dimensional Heisenberg group \({\mathbb H}_1\) is a space–time with the Lorentzian metric \(F_{\theta _0}\) (Fefferman’s metric) associated to the canonical Tanaka–Webster flat contact form \(\theta _0\) on \({\mathbb H}_1\). The matter and energy content of \(\mathfrak M\) is described by the energy-momentum tensor \({T}_{\mu \nu }\) (the trace-less Ricci tensor of \(F_{\theta _0}\)) as an effect of the non flat nature of Feferman’s metric \(F_{\theta _0}\). We study the gravitational field equations \(R_{\mu \nu } - (1/2) \, R \, g_{\mu \nu } = {T}_{\mu \nu }\) on \({\mathfrak M}\). We consider the first order perturbation \(g = F_{\theta _0} + \epsilon \, h\), \(\epsilon<< 1\), and linearize the field equations about \(F_{\theta _0}\). We determine a Lorentzian metric g on \({\mathfrak M}\) which solves the linearized field equations corresponding to a diagonal perturbation h.  相似文献   

6.
Let \( \alpha \) be a Morse closed \( 1 \)-form of a smooth \( n \)-dimensional manifold \( M \). The zeroes of \( \alpha \) of index \( 0 \) or \( n \) are called centers. It is known that every non-vanishing de Rham cohomology class \( u \) contains a Morse representative without centers. The result of this paper is the one-parameter analogue of the last statement: every generic path \( (\alpha _t)_{ t\in [0,1] }\) of closed \( 1 \)-forms in a fixed class \( u\ne 0 \) such that \( \alpha _0,\alpha _1 \) have no centers, can be modified relatively to its extremities to another such path \( (\beta _t)_{t \in [0,1]} \) having no center at all.  相似文献   

7.
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction–diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of \(c\ge c^*\) for the degenerate reaction–diffusion equation without delay, where \(c^*>0\) is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay \(\tau >0\). Furthermore, we prove the global existence and uniqueness of \(C^{\alpha ,\beta }\)-solution to the time-delayed degenerate reaction–diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted \(L^1\)-space. The exponential convergence rate is also derived.  相似文献   

8.
Let \(\{X(t):t\in \mathbb R_+\}\) be a stationary Gaussian process with almost surely (a.s.) continuous sample paths, \(\mathbb E X(t) = 0, \mathbb E X^2(t) = 1\) and correlation function satisfying (i) \(r(t) = 1 - C|t|^{\alpha } + o(|t|^{\alpha })\) as \(t\rightarrow 0\) for some \(0\le \alpha \le 2\) and \(C>0\); (ii) \(\sup _{t\ge s}|r(t)|<1\) for each \(s>0\) and (iii) \(r(t) = O(t^{-\lambda })\) as \(t\rightarrow \infty \) for some \(\lambda >0\). For any \(n\ge 1\), consider n mutually independent copies of X and denote by \(\{X_{r:n}(t):t\ge 0\}\) the rth smallest order statistics process, \(1\le r\le n\). We provide a tractable criterion for assessing whether, for any positive, non-decreasing function \(f, \mathbb P(\mathscr {E}_f)=\mathbb P(X_{r:n}(t) > f(t)\, \text { i.o.})\) equals 0 or 1. Using this criterion we find, for a family of functions \(f_p(t)\) such that \(z_p(t)=\mathbb P(\sup _{s\in [0,1]}X_{r:n}(s)>f_p(t))=O((t\log ^{1-p} t)^{-1})\), that \(\mathbb P(\mathscr {E}_{f_p})= 1_{\{p\ge 0\}}\). Consequently, with \(\xi _p (t) = \sup \{s:0\le s\le t, X_{r:n}(s)\ge f_p(s)\}\), for \(p\ge 0\) we have \(\lim _{t\rightarrow \infty }\xi _p(t)=\infty \) and \(\limsup _{t\rightarrow \infty }(\xi _p(t)-t)=0\) a.s. Complementarily, we prove an Erdös–Révész type law of the iterated logarithm lower bound on \(\xi _p(t)\), namely, that \(\liminf _{t\rightarrow \infty }(\xi _p(t)-t)/h_p(t) = -1\) a.s. for \(p>1\) and \(\liminf _{t\rightarrow \infty }\log (\xi _p(t)/t)/(h_p(t)/t) = -1\) a.s. for \(p\in (0,1]\), where \(h_p(t)=(1/z_p(t))p\log \log t\).  相似文献   

9.
For \(0<\alpha <\infty \), \(0<p<\infty \) and \(0<s<\infty \), we characterize the closures in the \(\alpha \)-Bloch norm of \(\alpha \)-Bloch functions that are in a Hardy space \(H^p\) and in a Hardy–Sobolev space \(H^p_s\) on the unit ball of \(\mathbb {C}^n\).  相似文献   

10.
This paper concerns a functional of the form
$$\begin{aligned} \Phi (u)=\int _\Omega L(x,u(x),\nabla u(x))\, dx \end{aligned}$$
on the Sobolev space \(H_0^1(\Omega )\) where \(\Omega \) is a bounded open subset of \({\mathbb {R}}^N\) with \(N\ge 3\) and \(0\in \Omega \). The hypotheses on L ensure that \(u\equiv 0\) is a critical point of \(\Phi \), but allow the Lagrangian to be singular at \(x=0\). It is shown that, under these assumptions, the usual conditions associated with Jacobi (positive definiteness of the second variation of \(\Phi \) at \(u\equiv 0\)), Legendre (ellipticity at \(u\equiv 0\)) and Weierstrass [strict convexity of \(L(x,s,\xi )\) with respect to \(\xi \)] from the calculus of variations are not sufficient ensure that \(u\equiv 0\) is a local minimum of \(\Phi \). Using recent criteria for the existence of a potential well of a \(C^1\)-functional on a real Hilbert space, conditions implying that \(u\equiv 0\) lies in a potential well of \(\Phi \) are established. They are shown to be sharp in some cases.
  相似文献   

11.
As a model for an on-line classification setting we consider a stochastic process \((X_{-n},Y_{-n})_{n}\), the present time-point being denoted by 0, with observables \(\ldots ,X_{-n},X_{-n+1}, \ldots , X_{-1}, X_0\) from which the pattern \(Y_0\) is to be inferred. So in this classification setting, in addition to the present observation \(X_0\) a number l of preceding observations may be used for classification, thus taking a possible dependence structure into account as it occurs e.g. in an ongoing classification of handwritten characters. We treat the question how the performance of classifiers is improved by using such additional information. For our analysis, a hidden Markov model is used. Letting \(R_l\) denote the minimal risk of misclassification using l preceding observations we show that the difference \(\sup _k |R_l - R_{l+k}|\) decreases exponentially fast as l increases. This suggests that a small l might already lead to a noticeable improvement. To follow this point we look at the use of past observations for kernel classification rules. Our practical findings in simulated hidden Markov models and in the classification of handwritten characters indicate that using \(l=1\), i.e. just the last preceding observation in addition to \(X_0\), can lead to a substantial reduction of the risk of misclassification. So, in the presence of stochastic dependencies, we advocate to use \( X_{-1},X_0\) for finding the pattern \(Y_0\) instead of only \(X_0\) as one would in the independent situation.  相似文献   

12.
In this paper, we investigate the Hyers–Ulam stability of the differential operators \(T_\lambda \) and D on the weighted Hardy spaces \(H_\beta ^2\) with the reproducing property. We obtain a necessary and sufficient condition in order that D is stable on \(H_\beta ^2\), and construct an example concerning the stability of \(T_\lambda \) on \(H_\beta ^2\). Moreover, we also investigate the Hyers–Ulam stability of the partial differential operators \(D_i\) on the several variables reproducing kernel space \(H_f^2(\mathbb {B}_d)\).  相似文献   

13.
Given integers \(k\ge 2\), \(n \ge 2\), \(m \ge 2\) and \( a_1,a_2,\ldots ,a_m \in {\mathbb {Z}}{\backslash }{\{0\}}\), and let \(f(z)= \sum _{j=0}^{n}c_jz^j\) be a polynomial of integer coefficients with \(c_n>0\) and \((\sum _{i=1}^ma_i)|f(z)\) for some integer z. For a k-coloring of \([N]=\{1,2,\ldots ,N\}\), we say that there is a monochromatic solution of the equation \(a_1x_1+a_2x_2+\cdots +a_mx_m=f(z)\) if there exist pairwise distinct \(x_1,x_2,\ldots ,x_m\in [N]\) all of the same color such that the equation holds for some \(z\in \mathbb {Z}\). Problems of this type are often referred to as Ramsey-type problems. In this paper, it is shown that if \(a_i>0\) for \(1\le i\le m\), then there exists an integer \(N_0=N(k,m,n)\) such that for \(N\ge N_0\), each k-coloring of [N] contains a monochromatic solution \(x_1,x_2,\ldots ,x_m\) of the equation \(a_1x_1+a_2x_2+ \cdots +a_mx_m= f(z)\). Moreover, if n is odd and there are \(a_i\) and \(a_j\) such that \(a_ia_j<0\) for some \(1 \le i\ne j\le m\), then the assertion holds similarly.  相似文献   

14.
Let \(\mathbb {F}_{p^m}\) be a finite field of cardinality \(p^m\), where p is a prime, and kN be any positive integers. We denote \(R_k=F_{p^m}[u]/\langle u^k\rangle =F_{p^m}+uF_{p^m}+\cdots +u^{k-1}F_{p^m}\) (\(u^k=0\)) and \(\lambda =a_0+a_1u+\cdots +a_{k-1}u^{k-1}\) where \(a_0, a_1,\ldots , a_{k-1}\in F_{p^m}\) satisfying \(a_0\ne 0\) and \(a_1=1\). Let r be a positive integer satisfying \(p^{r-1}+1\le k\le p^r\). First we define a Gray map from \(R_k\) to \(F_{p^m}^{p^r}\), then prove that the Gray image of any linear \(\lambda \)-constacyclic code over \(R_k\) of length N is a distance preserving linear \(a_0^{p^r}\)-constacyclic code over \(F_{p^m}\) of length \(p^rN\). Furthermore, the generator polynomials for each linear \(\lambda \)-constacyclic code over \(R_k\) of length N and its Gray image are given respectively. Finally, some optimal constacyclic codes over \(F_{3}\) and \(F_{5}\) are constructed.  相似文献   

15.
We consider a continuum percolation model on \(\mathbb {R}^d\), \(d\ge 1\). For \(t,\lambda \in (0,\infty )\) and \(d\in \{1,2,3\}\), the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity \(\lambda >0\). When \(d\ge 4\), the Brownian paths are replaced by Wiener sausages with radius \(r>0\). We establish that, for \(d=1\) and all choices of t, no percolation occurs, whereas for \(d\ge 2\), there is a non-trivial percolation transition in t, provided \(\lambda \) and r are chosen properly. The last statement means that \(\lambda \) has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when \(d\in \{2,3\}\), but finite and dependent on r when \(d\ge 4\)). We further show that for all \(d\ge 2\), the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.  相似文献   

16.
We continue the study of stability of solving the interior problem of tomography. The starting point is the Gelfand–Graev formula, which converts the tomographic data into the finite Hilbert transform (FHT) of an unknown function f along a collection of lines. Pick one such line, call it the x-axis, and assume that the function to be reconstructed depends on a one-dimensional argument by restricting f to the x-axis. Let \(I_1\) be the interval where f is supported, and \(I_2\) be the interval where the Hilbert transform of f can be computed using the Gelfand–Graev formula. The equation to be solved is \(\left. {\mathcal {H}}_1 f=g\right| _{I_2}\), where \({\mathcal {H}}_1\) is the FHT that integrates over \(I_1\) and gives the result on \(I_2\), i.e. \({\mathcal {H}}_1: L^2(I_1)\rightarrow L^2(I_2)\). In the case of complete data, \(I_1\subset I_2\), and the classical FHT inversion formula reconstructs f in a stable fashion. In the case of interior problem (i.e., when the tomographic data are truncated), \(I_1\) is no longer a subset of \(I_2\), and the inversion problems becomes severely unstable. By using a differential operator L that commutes with \({\mathcal {H}}_1\), one can obtain the singular value decomposition of \({\mathcal {H}}_1\). Then the rate of decay of singular values of \({\mathcal {H}}_1\) is the measure of instability of finding f. Depending on the available tomographic data, different relative positions of the intervals \(I_{1,2}\) are possible. The cases when \(I_1\) and \(I_2\) are at a positive distance from each other or when they overlap have been investigated already. It was shown that in both cases the spectrum of the operator \({\mathcal {H}}_1^*{\mathcal {H}}_1\) is discrete, and the asymptotics of its eigenvalues \(\sigma _n\) as \(n\rightarrow \infty \) has been obtained. In this paper we consider the case when the intervals \(I_1=(a_1,0)\) and \(I_2=(0,a_2)\) are adjacent. Here \(a_1 < 0 < a_2\). Using recent developments in the Titchmarsh–Weyl theory, we show that the operator L corresponding to two touching intervals has only continuous spectrum and obtain two isometric transformations \(U_1\), \(U_2\), such that \(U_2{\mathcal {H}}_1 U_1^*\) is the multiplication operator with the function \(\sigma (\lambda )\), \(\lambda \ge (a_1^2+a_2^2)/8\). Here \(\lambda \) is the spectral parameter. Then we show that \(\sigma (\lambda )\rightarrow 0\) as \(\lambda \rightarrow \infty \) exponentially fast. This implies that the problem of finding f is severely ill-posed. We also obtain the leading asymptotic behavior of the kernels involved in the integral operators \(U_1\), \(U_2\) as \(\lambda \rightarrow \infty \). When the intervals are symmetric, i.e. \(-a_1=a_2\), the operators \(U_1\), \(U_2\) are obtained explicitly in terms of hypergeometric functions.  相似文献   

17.
Let \(n\ge 3, \Omega \) be a bounded, simply connected and semiconvex domain in \({\mathbb {R}}^n\) and \(L_{\Omega }:=-\Delta +V\) a Schrödinger operator on \(L^2 (\Omega )\) with the Dirichlet boundary condition, where \(\Delta \) denotes the Laplace operator and the potential \(0\le V\) belongs to the reverse Hölder class \(RH_{q_0}({\mathbb {R}}^n)\) for some \(q_0\in (\max \{n/2,2\},\infty ]\). Assume that the growth function \(\varphi :\,{\mathbb {R}}^n\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }({\mathbb {R}}^n)\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) be the Musielak–Orlicz–Hardy space whose elements are restrictions of elements of the Musielak–Orlicz–Hardy space, associated with \(L_{{\mathbb {R}}^n}:=-\Delta +V\) on \({\mathbb {R}}^n\), to \(\Omega \). In this article, the authors show that the operators \(VL^{-1}_\Omega \) and \(\nabla ^2L^{-1}_\Omega \) are bounded from \(L^1(\Omega )\) to weak-\(L^1(\Omega )\), from \(L^p(\Omega )\) to itself, with \(p\in (1,2]\), and also from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to the Musielak–Orlicz space \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself. As applications, the boundedness of \(\nabla ^2{\mathbb {G}}_D\) on \(L^p(\Omega )\), with \(p\in (1,2]\), and from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself is obtained, where \({\mathbb {G}}_D\) denotes the Dirichlet Green operator associated with \(L_\Omega \). All these results are new even for the Hardy space \(H^1_{L_{{\mathbb {R}}^n},\,r}(\Omega )\), which is just \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) with \(\varphi (x,t):=t\) for all \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\).  相似文献   

18.
Let \(\Delta = \sum _{m=0}^\infty q^{(2m+1)^2} \in \mathbf {F}_2[[q]]\) be the reduction mod 2 of the \(\Delta \) series. A modular form of level 1, \(f=\sum _{n\geqslant 0} c(n) \,q^n\), with integer coefficients, is congruent modulo \(2\) to a polynomial in \(\Delta \). Let us set \(W_f(x)=\sum _{n\leqslant x,\ c(n)\text { odd }} 1\), the number of odd Fourier coefficients of \(f\) of index \(\leqslant x\). The order of magnitude of \(W_f(x)\) (for \(x\rightarrow \infty \)) has been determined by Serre in the seventies. Here, we give an asymptotic equivalent for \(W_f(x)\). Let \(p(n)\) be the partition function and \(A_0(x)\) (resp. \(A_1(x)\)) be the number of \(n\leqslant x\) such that \(p(n)\) is even (resp. odd). In the preceding papers, the second-named author has shown that \(A_0(x)\geqslant 0.28 \sqrt{x\;\log \log x}\) for \(x\geqslant 3\) and \(A_1(x)>\frac{4.57 \sqrt{x}}{\log x}\) for \(x\geqslant 7\). Here, it is proved that \(A_0(x)\geqslant 0.069 \sqrt{x}\;\log \log x\) holds for \(x>1\) and that \(A_1(x) \geqslant \frac{0.037 \sqrt{x}}{(\log x)^{7/8}}\) holds for \(x\geqslant 2\). The main tools used to prove these results are the determination of the order of nilpotence of a modular form of level-\(1\) modulo \(2\), and of the structure of the space of those modular forms as a module over the Hecke algebra, which have been given in a recent work of Serre and the second-named author.  相似文献   

19.
Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a non-zero derivation of R, F and G are two generalized derivations of R such that \(d\{F(u)u-uG^2(u)\}=0\) for all \(u\in f(R)\). Then one of the following holds:
  1. (i)
    there exist \(a, b, p\in U\), \(\lambda \in C\) such that \(F(x)=\lambda x+bx+xa^2\), \(G(x)=ax\), \(d(x)=[p, x]\) for all \(x\in R\) with \([p, b]=0\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R;
     
  2. (ii)
    there exist \(a, b, p\in U\) such that \(F(x)=ax\), \(G(x)=xb\), \(d(x)=[p,x]\) for all \(x\in R\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R with \([p, a-b^2]=0\);
     
  3. (iii)
    there exist \(a\in U\) such that \(F(x)=xa^2\) and \(G(x)=ax\) for all \(x\in R\);
     
  4. (iv)
    there exists \(a\in U\) such that \(F(x)=a^2x\) and \(G(x)=xa\) for all \(x\in R\) with \(a^2\in C\);
     
  5. (v)
    there exist \(a, p\in U\), \(\lambda , \alpha , \mu \in C\) such that \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) and \(d(x)=[p,x]\) for all \(x\in R\) with \(a^2=\mu -\alpha p\) and \(\alpha p^2+(\lambda -2\mu ) p\in C\);
     
  6. (vi)
    there exist \(a\in U\), \(\lambda \in C\) such that R satisfies \(s_4\) and either \(F(x)=\lambda x+xa^2\), \(G(x)=ax\) or \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) for all \(x\in R\).
     
  相似文献   

20.
We are concerned with the existence of infinitely many solutions for the problem \(-\Delta u=|u|^{p-2}u+f\) in \(\Omega \), \(u=u_0\) on \(\partial \Omega \), where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 3\). This can be seen as a perturbation of the problem with \(f=0\) and \(u_0=0\), which is odd in u. If \(\Omega \) is invariant with respect to a closed strict subgroup of O(N), then we prove infinite existence for all functions f and \(u_0\) in certain spaces of invariant functions for a larger range of exponents p than known before. In order to achieve this, we prove Lieb–Cwikel–Rosenbljum-type bounds for invariant potentials on \(\Omega \), employing improved Sobolev embeddings for spaces of invariant functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号