首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A novel approach to describing the behaviour of multiphase elastic porous media is proposed. The average values of the physical quantities needed to describe the motions of porous media are formulated using an integral relation. The validity of this relation is taken as the fundamental hypothesis. The integral definition of the average values enables integral relations to be devised for the average values from the integral laws of conservation of mass, momentum and energy and the increase in entropy. Along with the average values, the integral relations contain new variables that can be identified with generalized thermodynamic forces, which can be used to take into account the phase interaction in a porous medium. The integral relations are used to derive differential equations for the rate of entropy change and Gibbs relations for a porous medium as a basis for obtaining the constitutive relations. Relationships between the thermomechanical parameters of the model are established from the Gibbs relations under additional assumptions. The equation for the rate of entropy change can be used to establish relations between the generalized thermodynamic forces and fluxes. A complete system of differential equations in the defining parameters, which describes the motion of multiphase elastic porous media, is finally obtained.  相似文献   

2.
We propose a thermodynamic method and a statistical one for constructing the constitutive equations of elastoviscoplastic deformation and strengthening of materials. The thermodynamic method is based on the energy conservation law as well as the equations of entropy balance and entropy generation in the presence of self-equilibrated internal microstresses, which are characterized by coupled strengthening parameters. The general constitutive equations consist of the relations between thermodynamic flows and forces, which follow from nonnegativity of entropy generation and satisfy the generalized Onsager principle, as well as the thermoelasticity relations and the expression for entropy, which follow from the energy conservation law. The specific constitutive equations are obtained on the basis of representation of the energy dissipation rate as a sum of two constituents that describe translational and isotropic strengthening and are approximated by power and hyperbolic sine laws. Starting from the stochastic microstructural concepts, we construct the constitutive equations of elastoviscoplastic deformation and strengthening on the basis of the linear model of thermoelasticity and the nonlinear Maxwell model for spherical and deviatoric components of microstresses and microstrains, respectively. The solution of the problem of the effective properties and stress-strain state of a three-component material is constructed with the use of the combined Voigt–Reuss scheme and leads to constitutive equations coinciding, as to their form, with similar equations constructed by the thermodynamic method.  相似文献   

3.
We study the problem of consistency of equations of continuum dynamics (using the Euler equations and the continuity equation as examples) and thermodynamic equations of state (for the specific free energy, entropy, and volume). We propose a variant of the Hamiltonian formulation of a model that combines the fluid dynamics of a potential flow of a compressible fluid or gas and local equilibrium thermodynamics into a unified field theory. Thermodynamic equations of state appear in this model as second-class constraint equations. As a consistency condition, there arises another second-class constraint requiring that the product of density and temperature should be independent of time. The model provides an in-principle possibility of finding the time dependence of the specific entropy of the arising dynamical system.  相似文献   

4.
We study the unsteady motion of a viscoelastic fluid modeled by a second-order fluid where normal stress coefficients and viscosity depend on the shear rate by using a power-law model. To study this problem, we use the one-dimensional nine-director Cosserat theory approach which reduces the exact three-dimensional equations to a system depending only on time and on a single spatial variable. Integrating the equation of conservation of linear momentum over the tube cross-section, with the velocity field approximated by the Cosserat theory, we obtain a one-dimensional system. The velocity field approximation satisfies both the incompressibility condition and the kinematic boundary condition exactly. From this one-dimensional system we obtain the relationship between average pressure and volume flow rate over a finite section of the tube with constant and variable radius. Also, we obtain the correspondent equation for the wall shear stress which enters directly in the formulation as a dependent variable. Attention is focused on some numerical simulation of unsteady/steady flows for average pressure, wall shear stress and on the analysis of perturbed flows.  相似文献   

5.
In this paper we propose an extended entropy condition for general systems of hyperbolic conservation laws with several space variables. This entropy condition generalizes the well-known condition (E) of Volpert for a single conservation law with several space variables and reduces to the entropy condition proposed earlier by the author for systems with one space variable. The Riemann problem for general nonisentropic gas equations has a unique solution for initial data with arbitrarily large jumps. The occurrence of a vacuum region is observed. The projections of shock curves on the pressure-velocity plane are analyzed so as to study the interaction of weak shocks. Our results differ markedly from those of previous works in that we do not assume the equation of state to be polytropic. In fact our assumptions on the equation of state allow the pressure to be a nonconvex function of specific volume.The Riemann problem for this general system of gas equations was also treated by B. Wendroff when the initial data are near constant.  相似文献   

6.
New relations for the stress and strain tensors, which comprise energy pairs, are obtained for a non-linearly elastic material using a similar method to that employed by Novozhilov, based on a trigonometric representation of the tensors. Shear strain and stress tensors, not used previously, are introduced in a natural way. It is established that the unit tensor, the deviator and the shear tensor form an orthogonal tensor basis. The stress tensor can be expanded in a strain-tensor basis and vice versa. By using this expansion, the non-linear law of elasticity can be written in a compact and physically clear form. It is shown that in the frame of the principal axes the stresses are expressed in terms of the strains and vice versa using linear relations, while the non-linearity is contained in the coefficients, which are functions of mixed invariants of the tensors, introduced by Novozhilov, the generalized moduli of bulk compression and shear and the phase of similitude of the deviators. Relations for different energy pairs of tensors are considered, including for tensors of the true stresses and strains, where the generalized moduli of elasticity have a physical meaning for large strains.  相似文献   

7.
Different forms of expressing diffusion and heat fluxes in multicomponent mixtures, obtained by methods of non-equilibrium thermodynamics and the kinetic theory of gas mixtures, are analysed and compared. It is shown that an alternative representation of the linear relations of non-equilibrium thermodynamics is possible, which enables them to be written in a form similar to that of the well-known Stefan–Maxwell equations. A relation between the phenomenological coefficients of non-equilibrium thermodynamics and the corresponding transport coefficients obtained in kinetic theory is established, with a confirmation that the Onsager reciprocity relations are satisfied. It is shown that there is an advantage in writing the transport relations on the basis of the “forces in terms of fluxes” representation, compared with the classical “fluxes in terms of forces” representation, used in standard schemes of phenomenological non-equilibrium thermodynamics and the Chapman–Enskog method, traditional for kinetic theory. A generalization of the Stefan-Maxwell equations and the equation for the heat flux is considered, which takes into account the contribution to these equations of the time and space derivatives of the fluxes. The relaxation form of the equations obtained enable one to approach the analysis of the propagation of small heat and concentration perturbations in gas mixtures to be justified, which, within the framework of classical transport relations, propagate with infinitely high velocity. The results presented in this review enable one to determine the areas of effective application of different methods of describing diffusion and heat transfer in multicomponent gas mixtures when solving specific gas-dynamic problems.  相似文献   

8.
We present a simple systematic algorithm for construction of expansions of the solutions of ordinary differential equations with rational coefficients in terms of mathematical functions having indefinite integral representation. The approach employs an auxiliary equation involving only the derivatives of a solution of the equation under consideration. Using power-series expansions of the solutions of this auxiliary equation, we construct several expansions of the four confluent Heun equations'' solutions in terms of the incomplete Gamma-functions. In the cases of single- and double-confluent Heun equations the coefficients of the expansions obey four-term recurrence relations, while for the bi- and tri-confluent Heun equations the recurrence relations in general involve five terms. Other expansions for which the expansion coefficients obey recurrence relations involving more terms are also possible. The particular cases when these relations reduce to ones involving less number of terms are identified. The conditions for deriving closed-form finite-sum solutions via right-hand side termination of the constructed series are discussed.  相似文献   

9.
戴天民 《应用数学和力学》2003,24(11):1108-1113
在对传统的微极热弹性理论和热压电弹性理论已进行过再研究的基础上重建极性热力连续统的较为完整的基本均衡方程和边界条件.从较为完整的虚功率原理推导出微极热弹性理论的运动方程和局部能率均衡方程.从较为完整的Hamilton原理通过全变分自然地推导出运动方程,熵均衡方程以及所有边界条件.给出的新的动量均衡方程和局部能率均衡方程与现有理论的结果存在本质的差异.通过过渡和归结可从微极热弹性理论分别得到微态热弹性理论的和偶应力热弹性动力学的结果.最后,按照上述思路直接给出微极热压电弹性理论的结果.  相似文献   

10.
We study a class of discrete velocity type approximations to nonlinear parabolic equations with source. After proving existence results and estimates on the solution to the relaxation system, we pass into the limit towards a weak solution, which is the unique entropy solution if the coefficients of the parabolic equation are constant.  相似文献   

11.
New and explicit anisotropic constitutive equations between the stretching and deviatoric stress tensors for the two- and three-dimensional cases of incompressible polycrystalline materials are presented. The anisotropy is assumed to be driven by an Orientation Distribution Function (ODF). The polycrystal is composed of transversally isotropic crystallites, the lattice orientation of which can be characterized by a single unit vector. The proposed constitutive equations are valid for any frame of reference and for every state of deformation. The basic assumption of this method is that the principle directions of the stretching and of the stress deviator are the same in the isotropic as well as in the anisotropic case. This means that the proposed constitutive laws are able to model the effects of anisotropy only via a change of the fluidity due to a change of the ODF. Such an assumption is justified to guarantee that, besides knowledge of the parameters involved in the isotropic constitutive equation, the anisotropic material response is completely characterized by only one additional parameter, a type of enhancement factor. Explicit comparisons with experimental data are conducted for Ih–ice.  相似文献   

12.
高杨  王贺元 《高等数学研究》2014,(1):77+82-77,82
介绍如何通过变换把二阶变系数线性微分方程转化为一阶非线性微分方程,进而利用待定系数法对其求解,并对二阶变系数线性微分方程与一阶常系数非线性微分方程的内在的关系进行讨论.  相似文献   

13.
New and explicit anisotropic constitutive equations between the stretching and deviatoric stress tensors for the two- and three-dimensional cases of incompressible polycrystalline materials are presented. The anisotropy is assumed to be driven by an Orientation Distribution Function (ODF). The polycrystal is composed of transversally isotropic crystallites, the lattice orientation of which can be characterized by a single unit vector. The proposed constitutive equations are valid for any frame of reference and for every state of deformation. The basic assumption of this method is that the principle directions of the stretching and of the stress deviator are the same in the isotropic as well as in the anisotropic case. This means that the proposed constitutive laws are able to model the effects of anisotropy only via a change of the fluidity due to a change of the ODF. Such an assumption is justified to guarantee that, besides knowledge of the parameters involved in the isotropic constitutive equation, the anisotropic material response is completely characterized by only one additional parameter, a type of enhancement factor. Explicit comparisons with experimental data are conducted for Ih–ice. Dedicated to Prof. L.W. Morland on the occasion of his 70th birthday Received: July 6, 2004; revised: November 8, 2004  相似文献   

14.
Summary. We consider the Becker-D?ring equations for large times. It is well-known [2] that if the total density of monomers exceeds a critical value, the excess density is contained in larger and larger clusters as time proceeds. We rigorously derive for general coefficients that the evolution of these large clusters is described by a nonlocal transport equation, which is for specific coefficients the classical coarsening model by Lifshitz, Slyozov, and Wagner (LSW). Our proof exploits the estimate of the energy and the energy dissipation rate given by the Lyapunov functional for the Becker-D?ring equations. We also provide a detailed asymptotic expansion of the higher-order dynamics.  相似文献   

15.
In this article, the steady‐state flow of a Hagen‐Poiseuille modelin a circular pipe is considered and entropy generation due tofluid friction and heat transfer is examined. Because of variationin fluid viscosity, the entropy generation in the flow varies. Inhis model, Arrhenius law is applied for temperature equation‐dependent viscosity, and the influence of viscosity parameters on the entropy generation number and distribution of temperature and velocity is investigated. The governing momentum and energy equations, which are coupled due to the dissipative term in the energy equation, were solved by analytical techniques. The solutions of equations via perturbation method and homotopy perturbation method are obtained and then compared with those of numerical solutions. It is found that the fluid viscosity influences considerably the temperature distribution in the fluid close to the pipe wall, and increasing pipe wall temperature enhances the rate of entropy generation. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 529–540, 2011  相似文献   

16.
The aim of this article is to construct a BGK operator for gas mixtures starting from the true Navier-Stokes equations. That is the ones having transport coefficients given by the hydrodynamical limit of the Boltzmann equation(s). Here the same hydrodynamical limit is obtained by introducing relaxation coefficients on certain moments of the distribution functions. Next the whole model is set by using entropy minimization under moments constraints. In our case the BGK operator allows to recover the exact Fick and Newton laws and satisfy the fundamental properties of the Boltzmann equations for inert gas mixtures.  相似文献   

17.
Radiative processes and non-equilibrium thermodynamics   总被引:1,自引:0,他引:1  
With the assumption of an elementary physical concept meteorologically effective radiative processes (absorption-emission, scattering) can be included consistently in nonequilibrium thermodynamics of irreversible phenomena. Analogously to the usual Gibbs relations a fundamental equation was formulated for monochromatic light rays as the nucleus of the theory.Using the methods of classical irreversible theory, a complete entropy balance equation is derived in which the entropy variations of the mass as well as of the radiation field are explicitly represented. The resulting entropy source strength function through its analytical structure reveals the dynamical character of the irreversible variation terms. The-expression being positive according to the second law of thermodynamics is found to have a bilinear form as a function of the irreversible fluxes representing the entropy generating radiative processes and their conjugated thermodynamic forces. The mathematical structure and the positive sign of, following the usual line of reasoning, motivate the assumption of constitutive relations for the irreversible radiative processes. These equations developed from purely thermodynamical reasoning turn out to be equivalent to the usual radiative transfer equation which is founded on a very different theoretical concept. A very fundamental relationship can be deduced in this context from the entropy production function. It provides a direct thermodynamical proof that in nonscattering media the definition of a local temperature is necessarily accompanied by the validity of the Kirchhoff law.  相似文献   

18.
Classroom Notes     
This note gives a simple‐minded approach to the two‐dimensional boundary layer equations. The pressure is eliminated from the equations of motion and the resulting equation is simplified by assuming that certain derivatives in the direction of the boundary are small compared with those at right angles to it. The simplified equation is then integrated to give a single boundary layer equation which, together with the stress rate of strain law and the continuity equation, is sufficient (in theory at least) to predict the flow.

The boundary layer equation as given does not depend on a particular form for the stress rate of strain law and could possibly form the basis for a non‐Newtonian investigation. The viscous boundary layer is given as a special case.  相似文献   

19.
We consider a class of one dimensional compressible systems with degenerate diffusion coefficients. We establish the fact that the solutions remain smooth as long as the diffusion coefficients do not vanish, and give local and global existence results. The models include the barotropic compressible Navier-Stokes equations, shallow water systems and the lubrication approximation of slender jets. In all these models the momentum equation is forced by the gradient of a solution-dependent potential: the active potential. The method of proof uses the Bresch-Desjardins entropy and the analysis of the evolution of the active potential.  相似文献   

20.
We provide a thermodynamic basis for the development of models that are usually referred to as ??phase-field models?? for compressible, incompressible, and quasi-incompressible fluids. Using the theory of mixtures as a starting point, we develop a framework within which we can derive ??phase-field models?? both for mixtures of two constituents and for mixtures of arbitrarily many fluids. In order to obtain the constitutive equations, we appeal to the requirement that among all admissible constitutive relations that which is appropriate maximizes the rate of entropy production (see Rajagopal and Srinivasa in Proc R Soc Lond A 460:631?C651, 2004). The procedure has the advantage that the theory is based on prescribing the constitutive equations for only two scalars: the entropy and the entropy production. Unlike the assumption made in the case of the Navier?CStokes?CFourier fluids, we suppose that the entropy is not only a function of the internal energy and the density but also of gradients of the partial densities or the concentration gradients. The form for the rate of entropy production is the same as that for the Navier?CStokes?CFourier fluid. As observed earlier in Heida and Málek (Int J Eng Sci 48(11):1313?C1324, 2010), it turns out that the dependence of the rate of entropy production on the thermodynamical fluxes is crucial. The resulting equations are of the Cahn?CHilliard?CNavier?CStokes type and can be expressed both in terms of density gradients or concentration gradients. As particular cases, we will obtain the Cahn?CHilliard?CNavier?CStokes system as well as the Korteweg equation. Compared to earlier approaches, our methodology has the advantage that it directly takes into account the rate of entropy production and can take into consideration any constitutive assumption for the internal energy (or entropy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号