首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

2.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

3.
The restriction of a Verma module of ${\bf U}(\mathfrak{sl}_3)$ to ${\bf U}(\mathfrak{sl}_2)$ is isomorphic to a Verma module tensoring with all the finite dimensional simple modules of ${\bf U}(\mathfrak{sl}_2)$ . The canonical basis of the Verma module is compatible with such a decomposition. An explicit decomposition of the tensor product of the Verma module of highest weight 0 with a finite dimensional simple module into indecomposable projective modules in the category $\mathcal O_{\rm{int}}$ of quantum $\mathfrak{sl}_2$ is given.  相似文献   

4.
Let R be a commutative Noetherian ring, and let n be a non-negative integer. In this article, by using the theory of Gorenstein dimensions, it is shown that whenever R is a homomorphic image of a Noetherian Gorenstein ring, then the invariants ${\inf\{i \in \mathbb{N}_0|\, \rm{dim\, Supp}(\mathfrak{b}^t H_{\mathfrak{a}}^i(M)) \geq n\, \rm{for\, all}\, t \in \mathbb{N}_0\}}$ and ${\inf\{\lambda_{\mathfrak{a} R_{\mathfrak{p}}}^{\mathfrak{b} R_{\mathfrak{p}}}(M_{\mathfrak{p}})|\, \mathfrak{p} \in {\rm Spec} \, R\, \rm{and\, dim}\, R/ \mathfrak{p} \geq n\}}$ are equal, for every finitely generated R-module M and for all ideals ${\mathfrak{a}, \mathfrak{b}}$ of R with ${\mathfrak{b}\subseteq \mathfrak{a}}$ . This generalizes Faltings’ Annihilator Theorem (see [6]).  相似文献   

5.
Let ${\mathfrak{a}}$ be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$ , where ${T_R(\mathfrak{a}, M)}$ is the largest submodule of M such that ${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$ . Several applications of this result are given. Among other things, it is shown that there exists an ideal ${\mathfrak{b}}$ of R such that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$ . Using this, we show that if ${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$ , then ${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$ These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).  相似文献   

6.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

7.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

8.
We study the category $\mathcal I _{\mathrm{gr }}$ of graded representations with finite-dimensional graded pieces for the current algebra $\mathfrak{g }\otimes \mathbf{C }[t]$ where $\mathfrak{g }$ is a simple Lie algebra. This category has many similarities with the category $\mathcal O $ of modules for $\mathfrak{g }$ , and in this paper, we prove an analog of the famous BGG duality in the case of $\mathfrak{sl }_{n+1}$ .  相似文献   

9.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

10.
The bcβγ-system $ \mathcal{W} $ of rank 3 has an action of the affine vertex algebra $ {V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ , and the commutant vertex algebra $ \mathcal{C}=\mathrm{Com}\left( {{V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right),\mathcal{W}} \right) $ contains copies of V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and Odake’s algebra $ \mathcal{O} $ . Odake’s algebra is an extension of the N = 2 super-conformal algebra with c = 9, and is generated by eight fields which close nonlinearly under operator product expansions. Our main result is that V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and $ \mathcal{O} $ form a Howe pair (i.e., a pair of mutual commutants) inside $ \mathcal{C} $ . More generally, any finite-dimensional representation of a Lie algebra $ \mathfrak{g} $ gives rise to a similar Howe pair, and this example corresponds to the adjoint representation of $ \mathfrak{s}{{\mathfrak{l}}_2} $ .  相似文献   

11.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^{p}(\mathbb{R}, w)}$ , where ${p \in (1, \infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{A}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a \in PSO^{\diamond}}$ ) and all convolution operators W 0(b) ( ${b \in PSO_{p,w}^{\diamond}}$ ), where ${PSO^{\diamond} \subset L^{\infty}(\mathbb{R})}$ and ${PSO_{p,w}^{\diamond} \subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R} \cup \{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^{p}(\mathbb{R}, w)}$ . Under some conditions on the Muckenhoupt weight w, we construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{A}_{p,w}}$ and establish a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ in terms of their Fredholm symbols. To study the Banach algebra ${\mathfrak{A}_{p,w}}$ we apply the theory of Mellin pseudodifferential operators, the Allan–Douglas local principle, the two idempotents theorem and the method of limit operators. The paper is divided in two parts. The first part deals with the local study of ${\mathfrak{A}_{p,w}}$ and necessary tools for studying local algebras.  相似文献   

12.
We prove a Godbillon?CVey index formula for longitudinal Dirac operators on a foliated bundle with boundary ${(X,\mathcal{F})}$ ; in particular, we define a Godbillon?CVey eta invariant on ${(\partial X,\mathcal{F}_{\partial}),}$ that is, a secondary invariant for longitudinal Dirac operators on type III foliations. Moreover, employing the Godbillon?CVey index as a pivotal example, we explain a new approach to higher index theory on geometric structures with boundary. This is heavily based on the interplay between the absolute and relative pairings of K-theory and cyclic cohomology for an exact sequence of Banach algebras, which in the present context takes the form ${0 \to \mathbf{\mathfrak{J}} \to \mathbf{\mathfrak{A}} \to \mathbf{\mathfrak{B}} \to 0}$ with ${ \mathbf{\mathfrak{J}}}$ dense and holomorphically closed in ${C^* (X,\mathcal{F})}$ and ${ \mathbf{\mathfrak{B}}}$ depending only on boundary data. Of particular importance is the definition of a relative cyclic cocycle ${(\tau_{GV}^r,\sigma_{GV})}$ for the pair ${\mathbf{\mathfrak{A}} \to \mathbf{\mathfrak{B}}}$ ; ${\tau_{GV}^r}$ is a cyclic cochain on ${\mathbf{\mathfrak{A}}}$ defined through a regularization à la Melrose of the usual Godbillon?CVey cyclic cocycle ?? GV ; ?? GV is a cyclic cocycle on ${\mathbf{\mathfrak{B}}}$ , obtained through a suspension procedure involving ?? GV and a specific 1-cyclic cocycle (Roe??s 1-cocycle). We call ?? GV the eta cocycle associated to ?? GV . The Atiyah?CPatodi?CSinger formula is obtained by defining a relative index class ${{\rm Ind} (D,D^\partial) \in K_* (\mathbf{\mathfrak{A}}, \mathbf{\mathfrak{B}})}$ and establishing the equality ${\langle {\rm Ind} (D), [\tau_{GV}] \rangle\,=\,\langle {\rm Ind} (D,D^\partial), [(\tau^r_{GV}, \sigma_{GV})] \rangle}$ . The Godbillon?CVey eta invariant ?? GV is obtained through the eta cocycle ?? GV .  相似文献   

13.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

14.
The notions of the parallel sum, the parallel difference, and the complement of two nonnegative sesquilinear forms were introduced and studied by Hassi, Sebestyé and de Snoo in Hassi et al. (Oper Theory Adv Appl 198:211–227, 2010) and Hassi et al. (J Funct Anal 257(12):3858–3894, 2009). In this paper we continue these investigations. The Galois correspondence induced by the map ${\mathfrak{m} \mapsto \mathfrak{m}_\mathfrak{t}}$ (where ${\mathfrak{m}_\mathfrak{t}}$ denotes the ${\mathfrak{t}}$ -complement of ${\mathfrak{m}}$ ) is also studied. Inspired by the work of Eriksson and Leutwiler Eriksson and Leutwiler (Math Ann 274:301–317, 1986), we introduce the notion of quasi-unit for nonnegative sesquilinear forms. The quasi-units are characterized by means of the complement and the disjoint part. It is also shown that the ${{\mathfrak{t}}}$ -quasi-units coincide with the extreme points of the convex set ${\mathfrak{z}: 0 \leq \mathfrak{z} \leq \mathfrak{t}\}}$ .  相似文献   

15.
Let K be a number field, let ${\varphi \in K(t)}$ be a rational map of degree at least 2, and let ${\alpha, \beta \in K}$ . We show that if α is not in the forward orbit of β, then there is a positive proportion of primes ${\mathfrak{p}}$ of K such that ${\alpha {\rm mod} \mathfrak{p}}$ is not in the forward orbit of ${\beta {\rm mod} \mathfrak{p}}$ . Moreover, we show that a similar result holds for several maps and several points. We also present heuristic and numerical evidence that a higher dimensional analog of this result is unlikely to be true if we replace α by a hypersurface, such as the ramification locus of a morphism ${\varphi: \mathbb{P}^{n} \to \mathbb{P}^{n}}$ .  相似文献   

16.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

17.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

18.
Let $\mathfrak{g}$ be a complex semisimple Lie algebra, $\mathfrak{b}$ a Borel subalgebra, and $\mathfrak{h}\subset\mathfrak{b}$ a Cartan subalgebra. Let V be a finite dimensional simple $U(\mathfrak{g})$ module. Based on a principal s-triple (e,h,f) and following work of Kostant, Brylinski (J Amer Math Soc 2(3):517–533, 1989) defined a filtration $\mathcal{F}_e$ for all weight subspaces V μ of V and calculated the dimensions of the graded subspaces for μ dominant. In Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) these dimensions were calculated for all μ. Let δM(0) be the finite dual of the Verma module of highest weight 0. It identifies with the global functions on a Weyl group translate of the open Bruhat cell and so inherits a natural degree filtration. On the other hand, up to an appropriate shift of weights, there is a unique $U(\mathfrak{b})$ module embedding of V into δM(0) and so the degree filtration induces a further filtration $\mathcal{F}$ on each weight subspace V μ . A casual reading of Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) might lead one to believe that $\mathcal{F}$ and $\mathcal{F}_e$ coincide. However this is quite false. Rather one should view $\mathcal{F}_e$ as coming from a left action of $U(\mathfrak{n})$ and then there is a second (Brylinski-Kostant) filtration $\mathcal{F}'_e$ coming from a right action. It is $\mathcal{F}'_e$ which may coincide with $\mathcal{F}$ . In this paper the above claim is made precise. First it is noted that $\mathcal{F}$ is itself not canonical, but depends on a choice of variables. Then it is shown that a particular choice can be made to ensure that $\mathcal{F}=\mathcal{F}'_e$ . An explicit form for the unique left $U(\mathfrak{b})$ module embedding $V\hookrightarrow\delta M(0)$ is given using the right action of $U(\mathfrak{n})$ . This is used to give a purely algebraic proof of Brylinski’s main result in Brylinski (J Amer Math Soc 2(3):517–533, 1989) which is much simpler than Joseph et al. (J Amer Math Soc 13(4):945–970, 2000). It is noted that the dimensions of the graded subspaces of $\rm{gr}_{\mathcal{F}_e} V_{\!\mu}$ and $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ can be very different. Their interrelation may involve the Kashiwara involution. Indeed a combinatorial formula for multiplicities in tensor products involving crystal bases and the Kashiwara involution is recovered. Though the dimensions for the graded subspaces of $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ are determined by polynomial degree, their values remain unknown.  相似文献   

19.
Let ${\mathfrak{g}=\mathfrak{g}^{\bar 0}\oplus \mathfrak{g}^{\bar 1}}$ be a ${\mathbb{Z}_2}$ -graded Lie algebra. We study the posets of abelian subalgebras of ${\mathfrak{g}^{\bar 1}}$ which are stable w.r.t. a Borel subalgebra of ${\mathfrak{g}^{\bar 0}}$ . In particular, we find a natural parametrization of maximal elements and dimension formulas for them. We recover as special cases several results of Kostant, Panyushev, and Suter.  相似文献   

20.
In 2009 Schneider obtained stability estimates in terms of the Banach–Mazur distance for several geometric inequalities for convex bodies in an n-dimensional normed space ${\mathbb{E}^n}$ . A unique feature of his approach is to express fundamental geometric quantities in terms of a single function ${\rho:\mathfrak{B} \times \mathfrak{B} \to \mathbb{R}}$ defined on the family of all convex bodies ${\mathfrak{B}}$ in ${\mathbb{E}^n}$ . In this paper we show that (the logarithm of) the symmetrized ρ gives rise to a pseudo-metric d D on ${\mathfrak{B}}$ inducing, from our point of view, a finer topology than Banach–Mazur’s d BM . Further, d D induces a metric on the quotient ${\mathfrak{B}/{\rm Dil}^+}$ of ${\mathfrak{B}}$ by the relation of positive dilatation (homothety). Unlike its compact Banach–Mazur counterpart, d D is only “boundedly compact,” in particular, complete and locally compact. The general linear group ${{\rm GL}(\mathbb{E}^n)}$ acts on ${\mathfrak{B}/{\rm Dil}^+}$ by isometries with respect to d D , and the orbit space is naturally identified with the Banach–Mazur compactum ${\mathfrak{B}/{\rm Aff}}$ via the natural projection ${\pi:\mathfrak{B}/{\rm Dil}^+\to\mathfrak{B}/{\rm Aff}}$ , where Aff is the affine group of ${\mathbb{E}^n}$ . The metric d D has the advantage that many geometric quantities are explicitly computable. We show that d D provides a simpler and more fitting environment for the study of stability; in particular, all the estimates of Schneider turn out to be valid with d BM replaced by d D .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号