首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We explored and specialized new Lie infinitesimals for the (3 + 1)-dimensional B-Kadomtsev-Petviashvii (BKP) using the commutation product, which results a system of nonlinear ODEs manually solved. Through two stages of Lie symmetry reduction, (3 + 1)-dimensional BKP equation is reduced to nonsolvable nonlinear ODEs using various combinations of optimal Lie vectors. Using the integration and Riccati equation methods, we investigate new analytical solutions for these ODEs. Back substituting to the original variables generates new solutions for BKP. Some selected solutions illustrated through three-dimensional plots.  相似文献   

2.
Based on the generalized symmetry group method presented by Lou and Ma [Lou and Ma, Non-Lie symmetry groups of (2 + 1)-dimensional nonlinear systems obtained from a simple direct method, J. Phys. A: Math. Gen. 38 (2005) L129], firstly, both the Lie point groups and the full symmetry group of the nonisospectral BKP equation are obtained, at the same time, a relationship is constructed between the new solutions and the old ones of equation. Secondly, the nonisospectral BKP can be proved to be Painlevé integrability by combining the standard WTC approach with the Kruskal’s simplification, some solutions are obtained by using the standard truncated Painlevé expansion. Finally, based on the relationship by the generalized symmetry group method and some solutions by using the standard truncated Painlevé expansion, some interesting solution are constructed.  相似文献   

3.
The symmetry of the (3 + 1)-dimensional partial differential equation has been derived via a direct symmetry method and proved to be infinite dimensional non-Virasoro type symmetry algebra. Many kinds of symmetry reductions have been obtained, including the (2 + 1)-dimensional ANNV equation and breaking soliton equation. And some new soliton solutions and complex solutions are obtained due to the Riccati equation method and symbolic computation.  相似文献   

4.
The -expansion method can be used for constructing exact travelling wave solutions of real nonlinear evolution equations. In this paper, we improve the -expansion method and explore new application of this method to (2+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation. New types of exact complex travelling wave solutions of (2+1)-dimensional BKP equation are found. Some exact solutions of (2+1)-dimensional BKP equation obtained before are special cases of our results in this paper.  相似文献   

5.
In this paper, based on new auxiliary ordinary differential equation with a sixth-degree nonlinear term, we study the (1 + 1)-dimensional combined KdV–MKdV equation, Hirota equation and (2 + 1)-dimensional Davey–Stewartson equation. Then, a series of new types of travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.  相似文献   

6.
We study local properties of solutions and their asymptotic extinction behavior for the fourth-order semilinear parabolic equation of diffusion–absorption type where p < 1, so that the absorption term is not Lipschitz continuous at u = 0. The Cauchy problem with bounded compactly supported initial data possesses solutions with finite interfaces, and we describe their oscillatory, sign changing properties for     . For p ∈ (0, 1), we also study positive solutions of the free-boundary problem with zero contact angle and zero-flux conditions. Finally, we describe families { fk } of similarity extinction patterns   uS ( x , t ) = ( T − t )1/(1− p ) f ( y )  , where   y = x /( T − t )1/4  , that vanish in finite time, as   t → T ∈ (0, ∞)  . Similar local and asymptotic properties are indicated for the sixth-order equation with source   相似文献   

7.
New exact solutions with built-in arbitrary functions for the (n + 1)-dimensional double sine-Gordon equation are studied by means of auxiliary solutions of the cubic nonlinear Klein–Gordon (CNKG) fields. By a proper selection of the arbitrary functions and the appropriate solutions of the CNKG systems, new solutions including periodic-solitoffs, periodic-twisted kinks, quasi-periodic and non-periodic waves are obtained.  相似文献   

8.
By using a improved extended tanh method with the aid of symbolic computation system, some new soliton-like solutions of the (2 + 1) dimensional spaces long wave equation are obtained.  相似文献   

9.
In this paper, nonlocal symmetries for the bilinear KP and bilinear BKP equations are re-studied. Two arbitrary parameters are introduced in these nonlocal symmetries by considering gauge invariance of the bilinear KP and bilinear BKP equations under the transformation     . By expanding these nonlocal symmetries in power series of each of two parameters, we have derived two types of bilinear NKP hierarchies and two types of bilinear NBKP hierarchies. An impressive observation is that bilinear positive and negative KP (NKP) and BKP hierarchies may be derived from the same nonlocal symmetries for the KP and BKP equations. Besides, as two concrete examples, we have derived bilinear Bäcklund transformations for   t −2  -flow of the NKP hierarchy and   t −1  -flow of the NBKP hierarchy. All these results have made it clear that more nice integrable properties would be found for these obtained NKP hierarchies and NBKP hierarchies. Because KP and BKP hierarchies have played an essential role in soliton theory, we believe that the bilinear NKP and NBKP hierarchies will have their right place in this field.  相似文献   

10.
Nonclassical symmetry methods are used to study the nonlinear diffusion equation with a nonlinear source. In particular, exponential and power law diffusivities are examined and we obtain mathematical forms of the source term which permit nonclassical symmetry reductions. In addition to the known source terms obtained by classical symmetry methods, we find new source terms which admit symmetry reductions. We also deduce a class of nonclassical symmetries which are valid for arbitrary diffusivity and deduce corresponding new solution types. This is an important result since previously only traveling wave solutions were known to exist for arbitrary diffusivity. A number of examples are considered and new exact solutions are constructed.  相似文献   

11.
In the present paper, some types of general solutions of a first-order nonlinear ordinary differential equation with six degree are given and a new generalized algebra method is presented to find more exact solutions of nonlinear differential equations. As an application of the method and the solutions of this equation, we choose the (2 + 1) dimensional Boiti Leon Pempinelli equation to illustrate the validity and advantages of the method. As a consequence, more new types and general solutions are found which include rational solutions and irrational solutions and so on. The new method can also be applied to other nonlinear differential equations in mathematical physics.  相似文献   

12.
In this paper, we study rational formal solutions of differential-difference equations by using a generalized ansätz. With the help of symbolic computation Maple, we obtain many explicit exact solutions of differential-difference equations(DDEs). The solutions contain solitary wave solutions and periodic wave solutions. The (2 + 1)-dimensional Toda lattice equation, relativistic Toda lattice equation and the discrete mKdV equation are chosen to illustrate our algorithm.  相似文献   

13.
In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary geometry by combining the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the MFS‐MPS‐EEM model to solve nonhomogeneous diffusion equations with time‐independent source terms and boundary conditions for any time and any shape. Nonhomogeneous diffusion equation with complex domain can be separated into a Poisson equation and a homogeneous diffusion equation using this model. The Poisson equation is solved by the MFS‐MPS model, in which the compactly supported radial basis functions are adopted for the MPS. On the other hand, utilizing the EEM the diffusion equation is first translated to a Helmholtz equation, which is then solved by the MFS together with the technique of the singular value decomposition (SVD). Since the present meshless method does not need mesh generation, nodal connectivity, or numerical integration, the computational effort and memory storage required are minimal as compared with other numerical schemes. Test results for two 2D diffusion problems show good comparability with the analytical solutions. The proposed algorithm is then extended to solve a problem with irregular domain and the results compare very well with solutions of a finite element scheme. Therefore, the present scheme has been proved to be very promising as a meshfree numerical method to solve nonhomogeneous diffusion equations with time‐independent source terms of any time frame, and for any arbitrary geometry. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
A 2 + 1-dimensional Volttera type lattice is proposed. Resorting to the nonlinearization of Lax pair, the 2 + 1-dimensional Volttera type lattice is decomposed into the known 1+1-dimensional differential-difference equations. The relation between a new 2 + 1-dimensional differential-difference equation, certain 1+1-dimensional continuous evolution equations and the known 1+1-dimensional differential-difference equations is discussed. Based on finite-order expansion of the Lax matrix, we introduce elliptic coordinates, from which the two 2 + 1-dimensional differential-difference equations are separated into solvable ordinary differential equations. The evolution of various flows is explicitly given through the Abel–Jacobi coordinates. Quasi-periodic solutions for the two 2 + 1-dimensional differential-difference equations are obtained.  相似文献   

15.
In this paper, we present a new coupled modified (1 + 1)‐dimensional Toda equation of BKP type (Kadomtsev‐Petviashvilli equation of B‐type), which is a reduction of the (2 + 1)‐dimensional Toda equation. Two‐soliton and three‐soliton solutions to the coupled system are derived. Furthermore, the N‐soliton solution is presented in the form of Pfaffian. The asymptotic analysis of two‐soliton solutions is studied to explain their collision properties. It is shown that the coupled system exhibit richer interaction phenomena including soliton fission, fusion, and mixed collision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this Letter, We present a further generalized algebraic method to the (2 + 1)-dimensional dispersive long-wave equations (DLWS), As a result, we can obtain abundant new formal exact solutions of the equation. The method can also be applied to solve more (2 + 1)-dimensional (or (3 + 1)-dimensional) nonlinear partial differential equations (NPDEs).  相似文献   

17.
In this paper, we obtain the symmetry group theorem by using the modified CK’s direct method, and some new exact solutions of (2 + 1)-dimensional BLP equation. Also we derive the corresponding Lie algebra and the conservation laws of BLP equation.  相似文献   

18.
We apply the group theory to Kadomtsev-Petviashvili-Burgers (KPBII) equation which is a natural model for the propagation of the two-dimensional damped waves. In correspondence with the generators of the symmetry group allowed by the equation, new types of symmetry reductions are performed. Some new exact solutions are obtained, which can be in the form of solitary waves and periodic waves. Specially, our solutions indicate that the equation may have time-dependent nonlinear shears. Such exact explicit solutions and symmetry reductions are important in both applications and the theory of nonlinear science.  相似文献   

19.
Using an improved direct reduction method, we find the equivalence transformations of (2 + 1)-dimensional AKNS shallow water wave equation with variable coefficients, and obtain the corresponding relationship between explicit solutions of AKNS equation and those of the corresponding reduced equation. In addition, we get some new explicit solutions of AKNS equation by applying Lie symmetry method.  相似文献   

20.
Through symbolic computation with Maple, the (2+1)-dimensional B-type Kadomtsev-Petviashvili(BKP) equation is considered. The generalized bilinear form not the Hirota bilinear method is the starting point in the computation process in this paper. The resulting lump solutions contain six free parameters, four of which satisfy two determinant conditions to guarantee the analyticity and rational localization of the solutions, while the others are arbitrary. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号