首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A system of coupled singularly perturbed initial value problems with two small parameters is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solution of the system has boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh a hybrid finite difference scheme is proved to be almost second-order accurate, uniformly in both small parameters. Numerical results supporting the theory are presented.  相似文献   

2.
Summary. We consider singularly perturbed linear elliptic problems in two dimensions. The solutions of such problems typically exhibit layers and are difficult to solve numerically. The streamline diffusion finite element method (SDFEM) has been proved to produce accurate solutions away from any layers on uniform meshes, but fails to compute the boundary layers precisely. Our modified SDFEM is implemented with piecewise linear functions on a Shishkin mesh that resolves boundary layers, and we prove that it yields an accurate approximation of the solution both inside and outside these layers. The analysis is complicated by the severe nonuniformity of the mesh. We give local error estimates that hold true uniformly in the perturbation parameter , provided only that , where mesh points are used. Numerical experiments support these theoretical results. Received February 19, 1999 / Revised version received January 27, 2000 / Published online August 2, 2000  相似文献   

3.
It is well known that on uniform mesh classical higher order schemes for evolutionary problems yield an oscillatory approximation of the solution containing discontinuity or boundary layers. In this article, an entirely new approach for constructing locally adaptive mesh is given to compute nonoscillatory solution by representative “second” order schemes. This is done using modified equation analysis and a notion of data dependent stability of schemes to identify the solution regions for local mesh adaptation. The proposed algorithm is applied on scalar problems to compute the solution with discontinuity or boundary layer. Presented numerical results show underlying second order schemes approximate discontinuities and boundary layers without spurious oscillations.  相似文献   

4.
A B-spline collocation method is presented for nonlinear singularly-perturbed boundary-value problems with mixed boundary conditions. The quasilinearization technique is used to linearize the original nonlinear singular perturbation problem into a sequence of linear singular perturbation problems. The B-spline collocation method on piecewise uniform mesh is derived for the linear case and is used to solve each linear singular perturbation problem obtained through quasilinearization. The fitted mesh technique is employed to generate a piecewise uniform mesh, condensed in the neighborhood of the boundary layers. The convergence analysis is given and the method is shown to have second-order uniform convergence. The stability of the B-spline collocation system is discussed. Numerical experiments are conducted to demonstrate the efficiency of the method.  相似文献   

5.
This paper deals with the study on system of reaction diffusion differential equations for Robin or mixed type boundary value problems (MBVPs). A cubic spline approximation has been used to obtain the difference scheme for the system of MBVPs, on a piecewise uniform Shishkin mesh defined in the whole domain. It has been shown that our proposed scheme, i.e., central difference approximation for outer region with cubic spline approximation for inner region of boundary layers, leads to almost second order parameter uniform convergence whereas the standard method i.e., the forward-backward approximation for mixed boundary conditions with central difference approximation inside the domain leads to almost first order convergence on Shishkin mesh. Numerical results are provided to show the efficiency and accuracy of these methods.  相似文献   

6.
We consider a model time-dependent convection-diffusion problem, whose solution may exhibit interior and boundary layers. The standard streamline diffusion scheme, with piecewise linear elements on a uniform mesh, will converge only at points that are not close to any layer. We replace the uniform mesh by a special piecewise uniform mesh that is chosen a priori and resolves part of any outflow boundary layer. The resulting method is convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 away from layers and almost order 3/4 inside the boundary layer.  相似文献   

7.
We assess the reliability of a simple a posteriori error estimatorfor steady-state convection–diffusion equations in caseswhere convection dominates. Our estimator is computed by solvinga local Poisson problem with Neumann boundary conditions. Itgives global upper and local lower bounds on the error measuredin the H1 semi-norm. However, the error may be overestimatedlocally within boundary layers if these are not resolved bythe mesh, that is, when the local mesh Péclet numberis significantly greater than unity. We discuss the implicationsof this overestimation in a practical context where the estimatoris used as a local error indicator within a self-adaptive meshrefinement process. Received 18 June 1999. Accepted 7 March 2000.  相似文献   

8.
We consider a class of singularly perturbed elliptic problems posed on a unit square. These problems are solved by using fitted mesh methods by many researchers but no attempts are made to solve them using fitted operator methods, except our recent work on reaction–diffusion problems [J.B. Munyakazi and K.C. Patidar, Higher order numerical methods for singularly perturbed elliptic problems, Neural Parallel Sci. Comput. 18(1) (2010), pp. 75–88]. In this paper, we design two fitted operator finite difference methods (FOFDMs) for singularly perturbed convection–diffusion problems which possess solutions with exponential and parabolic boundary layers, respectively. We observe that both of these FOFDMs are ?-uniformly convergent. This fact contradicts the claim about singularly perturbed convection–diffusion problems [Miller et al. Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996] that ‘when parabolic boundary layers are present, …, it is not possible to design an ?-uniform FOFDM if the mesh is restricted to being a uniform mesh’. We confirm our theoretical findings through computational investigations and also found that we obtain better results than those of Linß and Stynes [Appl. Numer. Math. 31 (1999), pp. 255–270].  相似文献   

9.
In this paper, a singularly perturbed convection diffusion boundary value problem, with discontinuous diffusion coefficient is examined. In addition to the presence of boundary layers, strong and weak interior layers can also be present due to the discontinuities in the diffusion coefficient. A priori layer adapted piecewise uniform meshes are used to resolve any layers present in the solution. Using a Petrov–Galerkin finite element formulation, a fitted finite difference operator is shown to produce numerical approximations on this fitted mesh, which are uniformly second order (up to logarithmic terms) globally convergent in the pointwise maximum norm.  相似文献   

10.
We describe the simulation of an exterior problem using a magnetic field deriving from magnetostatics, with a numerical method mixing the approaches of C. I. Goldstein and L.‐A. Ying. This method is based on the use of a graded mesh obtained by gluing homothetic layers in the exterior domain. On this mesh, we use an edge elements discretization and a recently proposed mixed formulation. In this paper, we provide both a theoretical and numerical study of the method. We establish an error estimate, describe the implementation, propose some preconditioning techniques and show the numerical results. We also compare these results with those obtained from an equivalent boundary elements approach. In this way, we retain that our method leads to a practical numerical implementation, a saving of storage, and turns out to be an alternative to the classical boundary elements method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 595–637, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号