首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Within a competitive electric power market, electricity price is one of the core elements, which is crucial to all the market participants. Accurately forecasting of electricity price becomes highly desirable. This paper propose a forecasting model of electricity price using chaotic sequences for forecasting of short term electricity price in the Australian power market. One modified model is applies seasonal adjustment and another modified model is employed seasonal adjustment and adaptive particle swarm optimization (APSO) that determines the parameters for the chaotic system. The experimental results show that the proposed methods performs noticeably better than the traditional chaotic algorithm.  相似文献   

2.
In this paper, for the parameter identification problem of chaotic system, a chaotic gravitational search algorithm (CGSA) is proposed. At first, an iterative chaotic map with infinite collapses is introduced and chaotic local search (CLS) is designed, then CLS and basic gravitational search are combined in the procedure frame. The CGSA is composed of coarse gravitational search and fine chaotic local search, while chaotic search seeks the optimal solution further, based on the current best solution found by the coarse gravitational search. In order to show the effectiveness of CGSA, both offline and online parameter identifications of Lorenz system are conducted in comparative experiments, while the performances of CGSA are compared with GA, PSO and GSA. The results demonstrate the effectiveness and efficiency of CGSA in solving the problem of parameter identification of chaotic system, and the improvement to GSA has been verified.  相似文献   

3.
Rainfall forecasting by technological machine learning models   总被引:5,自引:0,他引:5  
Accurate forecasting of rainfall has been one of the most important issues in hydrological research. Due to rainfall forecasting involves a rather complex nonlinear data pattern; there are lots of novel forecasting approaches to improve the forecasting accuracy. Recurrent artificial neural networks (RNNS) have played a crucial role in forecasting rainfall data. Meanwhile, support vector machines (SVMs) have been successfully employed to solve nonlinear regression and time series problems. This investigation elucidates the feasibility of hybrid model of RNNs and SVMs, namely RSVR, to forecast rainfall depth values. Moreover, chaotic particle swarm optimization algorithm (CPSO) is employed to choose the parameters of a SVR model. Subsequently, example of rainfall values during typhoon periods from Northern Taiwan is used to illustrate the proposed RSVRCPSO model. The empirical results reveal that the proposed model yields well forecasting performance, RSVRCPSO model provides a promising alternative for forecasting rainfall values.  相似文献   

4.
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.  相似文献   

5.
This paper introduces a novel hybrid optimization algorithm by taking advantage of the stochastic properties of chaotic search and the invasive weed optimization (IWO) method. In order to deal with the weaknesses associated with the conventional method, the proposed chaotic invasive weed optimization (CIWO) algorithm is presented which incorporates the capabilities of chaotic search methods. The functionality of the proposed optimization algorithm is investigated through several benchmark multi-dimensional functions. Furthermore, an identification technique for chaotic systems based on the CIWO algorithm is outlined and validated by several examples. The results established upon the proposed scheme are also supplemented which demonstrate superior performance with respect to other conventional methods.  相似文献   

6.
Accurate urban traffic flow forecasting is critical to intelligent transportation system developments and implementations, thus, it has been one of the most important issues in the research on road traffic congestion. Due to complex nonlinear data pattern of the urban traffic flow, there are many kinds of traffic flow forecasting techniques in literature, thus, it is difficult to make a general conclusion which forecasting technique is superior to others. Recently, the support vector regression model (SVR) has been widely used to solve nonlinear regression and time series problems. This investigation presents a SVR traffic flow forecasting model which employs the hybrid genetic algorithm-simulated annealing algorithm (GA-SA) to determine its suitable parameter combination. Additionally, a numerical example of traffic flow data from northern Taiwan is used to elucidate the forecasting performance of the proposed SVRGA-SA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal autoregressive integrated moving average (SARIMA), back-propagation neural network (BPNN), Holt-Winters (HW) and seasonal Holt-Winters (SHW) models. Therefore, the SVRGA-SA model is a promising alternative for forecasting traffic flow.  相似文献   

7.
Accurately electric load forecasting has become the most important management goal, however, electric load often presents nonlinear data patterns. Therefore, a rigid forecasting approach with strong general nonlinear mapping capabilities is essential. Support vector regression (SVR) applies the structural risk minimization principle to minimize an upper bound of the generalization errors, rather than minimizing the training errors which are used by ANNs. The purpose of this paper is to present a SVR model with immune algorithm (IA) to forecast the electric loads, IA is applied to the parameter determine of SVR model. The empirical results indicate that the SVR model with IA (SVRIA) results in better forecasting performance than the other methods, namely SVMG, regression model, and ANN model.  相似文献   

8.
Effective analysis and forecasting of carbon prices, which is an essential endeavor for the carbon trading market, is still considered a difficult task because of the nonlinearity and nonstationarity inherent in carbon prices. Previous studies have failed at the analysis and interval prediction of carbon prices and are limited to point forecasts. Therefore, an improved carbon price analysis and forecasting system that consists of an analysis module and a forecasting module is established in this study; more importantly, the forecasting module includes point forecasting and interval forecasting as well. Aimed at investigating the characteristics of the carbon price series, a chaotic analysis based on the maximum Lyapunov exponent is performed, the determination of appropriate distribution functions based on our newly proposed hybrid optimization algorithm is conducted, and different distribution functions are effectively designed in the analysis module. Furthermore, in the point forecasting model, the phase space reconstruction technique is applied to reconstruct the sequences decomposed by variational mode decomposition due to the chaotic characteristics of the carbon price series, and the reconstructed sequences are considered as the optimal input–output variables of the forecasting model. Then, an adaptive neuro-fuzzy inference system model is trained by the newly proposed hybrid optimization algorithm, which is developed for the first time in the domain of carbon price point forecasting. Moreover, based on the results of point forecasting and the distribution function of the carbon price series determined by the analysis module, the interval forecasting results can be obtained and implemented to provide more reliable information for decision making. Empirical results based on the carbon price data of the European Union Emissions Trading System and Shenzhen of China demonstrate that the proposed system achieves better results than other benchmark models in point forecasting as well as interval forecasting.  相似文献   

9.
There are more than two dozen variants of particle swarm optimization (PSO) algorithms in the literature. Recently, a new variant, called accelerated PSO (APSO), shows some extra advantages in convergence for global search. In the present study, we will introduce chaos into the APSO in order to further enhance its global search ability. Firstly, detailed studies are carried out on benchmark problems with twelve different chaotic maps to find out the most efficient one. Then the chaotic APSO (CAPSO) will be compared with some other chaotic PSO algorithms presented in the literature. The performance of the CAPSO algorithm is also validated using three engineering problems. The results show that the CAPSO with an appropriate chaotic map can clearly outperform standard APSO, with very good performance in comparison with other algorithms and in application to a complex problem.  相似文献   

10.
Accurate forecasting of inter-urban traffic flow has been one of the most important issues globally in the research on road traffic congestion. Because the information of inter-urban traffic presents a challenging situation, the traffic flow forecasting involves a rather complex nonlinear data pattern. In the recent years, the support vector regression model (SVR) has been widely used to solve nonlinear regression and time series problems. This investigation presents a short-term traffic forecasting model which combines the support vector regression model with continuous ant colony optimization algorithms (SVRCACO) to forecast inter-urban traffic flow. Additionally, a numerical example of traffic flow values from northern Taiwan is employed to elucidate the forecasting performance of the proposed SVRCACO model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal autoregressive integrated moving average (SARIMA) time series model. Therefore, the SVRCACO model is a promising alternative for forecasting traffic flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号