首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.  相似文献   

3.
Steady mixed convection micropolar fluid flow towards stagnation point formed on horizontal linearly stretchable melting surface is studied. The vortex viscosity of micropolar fluid along a melting surface is proposed as a constant function of temperature while dynamic viscosity and thermal conductivity are temperature dependent due to the influence of internal heat source on the fluid. Similarity transformations were used to convert the governing equation into non-linear ODE and solved numerically. A parametric study is conducted. An analysis of the results obtained shows that the flow-field is influenced appreciably by heat source, melting, velocity ratio, variable viscosity and thermal conductivity.  相似文献   

4.
Modeling and computation of a process with solid-liquid-solid phase transitions and a free capillary surface is discussed. The main components of the model are heat conduction, a free melt surface, a moving phase boundary, and its coupling with the Navier-Stokes equations. We present two different approaches for handling the phase transitions by applying in a FE method, namely an energy conservation based approach, and a sharp interface approach with moving mesh. By combining both methods, we benefit from the advantages of the respective approach. The methods are applied to a problem where material is accumulated by melting the tip of thin steel wires using laser heating. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A recently developed anisotropic Ergun equation for layered porous media is embedded into equations characterizing a chemically inert, axially symmetric model of the iron blast furnace. A novel transformation is used to deal with the furnace geometry, and additional modifications cater for convection, heat transfer, and the softening and melting of the iron ore. The equations are identified as examples of a generic convection-anisotropic diffusion problem, and a modular solution method is proposed for both single- and double-phase cases. The result is an algorithm that is significantly more efficient than existing techniques. It is used to demonstrate some features relating the gas distribution to the shape, structure, and location of the cohesive zone.  相似文献   

6.
The material behaviour of skeletal muscles can be decomposed into two parts: an active part, describing the contractile mechanisms, and a passive one, characterising the passive components such as the connective tissue. Computational models are used to support the understanding of complex mechanism inside a muscle. In the present work, we focus on the three-dimensional passive tissue behaviour from the experimental as well as modelling point of view. Therefore, quasi-static experiments have been performed on specimens with regular geometry. By using a three-dimensional optical measurement system the shape of the specimens has been reconstructed at different deformation states. On the modelling side a hyperelastic model with transversal isotropic fibre orientation has been used to describe non-linear stress responses. The model has been validated by performing analyses for different fibre orientations. In summary, it figures out that the proposed modelling approach is able to reflect the experimental results in a satisfying manner. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The present study deals with a new micromechanical modeling of the thermal conductivity of multi-coated inclusion-reinforced composites. The proposed approach has been developed in the general frame of anisotropic thermal behavior per phase and arbitrary ellipsoidal inclusions. Based on the Green's function technique, a new formulation of the problem of multi-coated inclusion is proposed. This formulation consists in constructing a system of integral equations, each associated to the thermal conductivity of each coating and the reference medium. Thanks to the concept of interior- and exterior-point Eshelby's conduction tensors, the exact solution of the problem of multicoated inclusion is obtained. Analytical expressions of the intensity in each phase and the effective thermal conductivity of the composite, through homogenizations schemes such as Generalized self-consistent and Mori-Tanaka models are provided. Results of the present model are successfully compared with those issued from both analytical models and finite elements methods for composites with doubly coated inclusions. Moreover, the developed micromechanical model has been applied to a three phase composite materials in order to analyze combined effects of the aspect ratio and the volume fraction of the ellipsoidal inclusions, the anisotropy of the thermal conductivity of interphase, the thermal conductivity contrast between local phases on the predicted effective thermal conductivity.  相似文献   

8.
We present a numerical scheme for modeling the electric field in the media with tensor conductivity. This scheme is based on vector finite element method in frequency domain. The numerical computations of the electric field in the anisotropic medium are done. The conductivity of the anisotropic medium is positive defined dense tensor in general case. We consider the electric field from anisotropic layer, inclined anisotropic layer and some anisotropic objects in isotropic half-space.  相似文献   

9.
Numerical analysis is carried out to examine the effects of thermo-solutal convection on the formation of complex patterns in directionally solidified binary alloys. A finite-difference analysis is used for dynamic modeling of a two-dimensional prototype of the vertical Bridgman system that takes into account heat transfer in the melt, crystal, and the ampoule, as well as the melt flow and solute transport. Actual temperature data from experimental measurements are used for accurately describing the thermal boundary conditions. A range of complex dynamical behavior is predicted in the melt flow due to flow transitions and this is found to be directly related to the spatial patterns observed experimentally in the solidified alloys. The model is applied to single phase solidification in the Al–Cu and Pb–Sn systems to characterize the effect of convection on the macroscopic shape of the interface. The application of the model to hyper-peritectic alloys in the Sn–Cd system shows that the presence of oscillating flow can give rise to a novel convection induced microstructure in which a tree-like primary phase in the center of the sample is embedded in the surrounding peritectic matrix.  相似文献   

10.
A singularly perturbed convection–diffusion problem in two and three space dimensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant of the finite element method. The dominant convection frequently gives rise to solutions with layers; hence anisotropic finite elements can be applied advantageously. The main focus is on a posteriori energy norm error estimation that is robust in the perturbation parameter and with respect to the mesh anisotropy. A residual error estimator and a local problem error estimator are proposed and investigated. The analysis reveals that the upper error bound depends on the alignment of the anisotropies of the mesh and of the solution. Hence reliable error estimation is possible for suitable anisotropic meshes. The lower error bound depends on the problem data via a local mesh Peclet number. Thus efficient error estimation is achieved for small mesh Peclet numbers. Altogether, error estimation approaches for isotropic meshes are successfully extended to anisotropic elements. Several numerical experiments support the analysis. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
We present a novel method for detecting some structural characteristics of multidimensional functions. We consider the multidimensional Gaussian white noise model with an anisotropic estimand. Using the relation between the Sobol decomposition and the geometry of multidimensional wavelet basis we can build test statistics for any of the Sobol functional components. We assess the asymptotical minimax optimality of these test statistics and show that they are optimal in presence of anisotropy with respect to the newly determined minimax rates of separation. An appropriate combination of these test statistics allows to test some general structural characteristics such as the atomic dimension or the presence of some variables. Numerical experiments show the potential of our method for studying spatio-temporal processes.  相似文献   

12.
The problem of the uniform heating of a two-layer plate is solved. The transversely isotropic elastic layer (soft plate) investigated is in ideal contact with an absolutely rigid layer, deformable only by thermal expansion. The generalized plane temperature problem reduces to determining the stress-strain state of the soft anisotropic layer investigated using the equations of the mixed problem of elasticity theory. At the ends of the boundary layer of the soft plate (a thin contact layer), no conditions are imposed. On the remaining part of the ends of the soft plate, the boundary conditions correspond to a free boundary. The problem has a bounded smooth solution. Unlike the approach described earlier [1], it is proposed to seek an accurate solution in the form of ordinary Fourier series with respect to a single longitudinal coordinate. Solutions in polynomials are also used. It is shown that the existence of these solutions in polynomials enables the convergence of the Fourier series to be improved considerably.  相似文献   

13.
Manfred H. Ulz 《PAMM》2009,9(1):307-308
A phenomenological model of rate-independent thermo-plasticity at finite strains is discussed. The formulation is based on an additive decomposition of the strain measure into an elastic and plastic part as proposed by Green and Naghdi. A constitutive model in the logarithmic Lagrangean strain-entropy space is developed capable of modelling isotropic elastic and anisotropic plastic material behaviour. The staggered solution scheme for coupled thermo-mechanical problems employs an isentropic phase for the deformation and an iso-geometrical phase for the thermal field. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A general approach to the construction of six-dimensional images of strain processes is proposed with the introduction of a vector basis which, in special cases, is identical to the well-known bases of A. A. Il’yushin, V. V. Novozhilov and Ye. I. Shemyakin and S. A. Khristianovich. The analysis of the properties of materials is based on the use of the concept of characteristic elastic states, which was introduced in the papers of J. Rychlewski. In the case of an isotropic material and four types of anisotropic materials belonging to the cubic, hexagonal, trigonal and tetragonal systems, characteristic subspaces, corresponding to the multiple eigenvalues of the elasticity tensor are defined in a six-dimensional space. In accordance with Hooke's law, the components of the stress and strain vectors in these subspaces preserve their axial alignment for any of their orthogonal transformations. The particular postulate of isotropy, formulated by Il’yushin, is therefore satisfied by definition within the framework of isotropic characteristic subspaces for linear elastic materials. An extension of the particular postulate to strain processes in non-linear anisotropic materials is proposed, on the basis of which a general form of constitutive relations is obtained containing a minimum number of experimentally determinable material functions.  相似文献   

15.
The role of thermal relaxation in nanoparticle melting is studied using a mathematical model based on the Maxwell–Cattaneo equation for heat conduction. The model is formulated in terms of a two-phase Stefan problem. We consider the cases of the temperature profile being continuous or having a jump across the solid–liquid interface. The jump conditions are derived from the sharp-interface limit of a phase-field model that accounts for variations in the thermal properties between the solid and liquid. The Stefan problem is solved using asymptotic and numerical methods. The analysis reveals that the Fourier-based solution can be recovered from the classical limit of zero relaxation time when either boundary condition is used. However, only the jump condition avoids the onset of unphysical “supersonic” melting, where the speed of the melt front exceeds the finite speed of heat propagation. These results conclusively demonstrate that the jump condition, not the continuity condition, is the most suitable for use in models of phase change based on the Maxwell–Cattaneo equation. Numerical investigations show that thermal relaxation can increase the time required to melt a nanoparticle by more than a factor of ten. Thus, thermal relaxation is an important process to include in models of nanoparticle melting and is expected to be relevant in other rapid phase-change processes.  相似文献   

16.
Two-dimensional recurrence resolvents for an inhomogeneous thin body (plates of variable thickness and shells) are derived by an asymptotic method based on the three-dimensional equations of the coupled dynamic problem of the thermoelasticity of an anisotropic body, which are solved in the case of anisotropy, having, at each point, one plane of symmetry perpendicular to the transverse axis. Recurrence formulae are derived in a general formulation for determining the components of the stress tensor, the strain vector and the function of the change in the temperature field, when different boundary conditions of dynamic problems of the theory of coupled thermoelasticity and thermal conductivity are given on the end surfaces of a thin body. An algorithm for determining the analytical and numerical (necessary) solutions of these boundary-value problems with an arbitrarily specified accuracy is developed.  相似文献   

17.
本文应用双空间尺度法导出了含稀疏分布椭圆柱形杂质的复合材料柱中的均匀化稳恒热传导方程,求得了等效导热系数的具体形式,并指出,当杂质枉截面单向分布时,宏观热传导是各向异性的,而当杂质枉截面按方向均匀分布时,宏观热传导是各向同性的.  相似文献   

18.
The simulation of prepregs must regard highly anisotropic, viscoelastic and thermal-chemical properties. To this end a constitutive model is split into an anisotropic elastic part, which represents the fibre fraction and an isotropic, viscoelastic part, representing the matrix. The second part also contains curing, causing a dependency on time and temperature. During real deep-drawing processes large deformations up to 50 % occur, which is considered in a formulation at large strains. This model contains an anisotropic elastic part based on a Neo-Hooke law enhanced by an anisotropic part. A viscoelastic part is added using Hencky-strains and the work-conjugate Hill-stress to transfer a model for small strains into large strains. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A numerical study is conducted to analyze the melting process around a horizontal circular cylinder in the presence of the natural convection in the melt phase. Two boundary conditions are investigated one of constant wall temperature over the surface of the cylinder and the other of constant heat flux. A numerical code is developed using an unstructured finite-volume method and an enthalpy porosity technique to solve for natural convection coupled to solid–liquid phase change. The validity of the numerical code used is ascertained by comparing our results with previously published results.  相似文献   

20.
We are concerned with the quantitative study of the electric field perturbation due to the presence of an inhomogeneous conductive rod embedded in a homogenous conductivity. We sharply quantify the dependence of the perturbed electric field on the geometry of the conductive rod. In particular, we accurately characterize the localization of the gradient field (i.e., the electric current) near the boundary of the rod where the curvature is sufficiently large. We develop layer‐potential techniques in deriving the quantitative estimates and the major difficulty comes from the anisotropic geometry of the rod. The result complements and sharpens several existing studies in the literature. It also generates an interesting application in EIT (electrical impedance tomography) in determining the conductive rod by a single measurement, which is also known as the Calderón's inverse inclusion problem in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号