首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the first part of a multiphase research project that seeks to identify and address the difficulties encountered by physics students when studying differential equations. Differential equations are used extensively by undergraduate physics students, particularly in the advanced modules of their degree. It is, therefore, necessary that students develop conceptual understanding of differential equations in addition to procedural skills. We have investigated the difficulties encountered by third-year students at Dublin City University in an introductory differential equations module. We developed a survey to identify these difficulties and administered it to students who had recently completed the module. We found that students’ mathematical ability in relation to procedural competence is an issue in their study of differential equations, but not as severe an issue as their conceptual understanding. Mathematical competence alone is insufficient if we expect our students to be able to recognize the need for differential equations in a physical context and to be able to set up, solve and interpret the solutions of such equations. We discuss the implications of these results for the next stages of the research project.  相似文献   

2.
In this exploratory study, we examined the effects of a quantitative reasoning instructional approach to linear equations in two variables on community college students’ conceptual understanding, procedural fluency, and reasoning ability. This was done in comparison to the use of a traditional procedural approach for instruction on the same topic. Data were gathered from a common unit assessment that included procedural and conceptual questions. Results demonstrate that small changes in instruction focused on quantitative reasoning can lead to significant differences in students’ ability to demonstrate conceptual understanding compared to a procedural approach. The results also indicate that a quantitative reasoning approach does not appear to diminish students’ procedural skills, but that additional work is needed to understand how to best support students’ understanding of linear relationships.  相似文献   

3.
Fifty-four postgraduate (elementary school) preservice teachers were given four tasks, two to assess their understanding of perimeter and two to assess their understanding of area. The teachers were asked to prepare a question that would assess student understanding of perimeter. Then they were given three problems and asked to decide whether the problems had sufficient information for a solution. The type of question prepared for the first task and the number of preservice teachers who stated that the other three tasks had insufficient information indicate a procedural understanding of perimeter and area, rather than a conceptual and relational understanding  相似文献   

4.
The purpose of this work was to explore how elementary preservice teachers responded to area conservation tasks. We administered written pre-assessments, followed by semi-structured interviews with 23 preservice teachers, asking them to respond to and reason with area conservation tasks. Findings highlighted several interesting preservice teachers' struggles when assessing area conservation tasks. In many cases, preservice teachers exhibited struggles similar to students, especially with regards to the justification of their area conservation claims. We provide recommendations to assist preservice teachers in their development of mathematical content knowledge in their teacher education programs, so that in the future they may better plan area lessons that promote procedural fluency from conceptual understanding in area measurement.  相似文献   

5.
Mathematization is critical in providing students with challenges for solving modelling tasks. Inadequate assumptions in a modelling task lead to an inadequate situational model, and to an inadequate mathematical model for the problem situation. However, the role of assumptions in solving modelling problems has been investigated only rarely. In this study, we intentionally designed two types of assumptions in two modelling tasks, namely, one task that requires non-numerical assumptions only and another that requires both non-numerical and numerical assumptions. Moreover, conceptual knowledge and procedural knowledge are also two factors influencing students’ modelling performance. However, current studies comparing modelling performance between Western and non-Western students do not consider the differences in students’ knowledge. This gap in research intrigued us and prompted us to investigate whether Taiwanese students can still perform better than German students if students’ mathematical knowledge in solving modelling tasks is differentiated. The results of our study showed that the Taiwanese students had significantly higher mathematical knowledge than did the German students with regard to either conceptual knowledge or procedural knowledge. However, if students of both countries were on the same level of mathematical knowledge, the German students were found to have higher modelling performance compared to the Taiwanese students in solving the same modelling tasks, whether such tasks required non-numerical assumptions only, or both non-numerical and numerical assumptions. This study provides evidence that making assumptions is a strength of German students compared to Taiwanese students. Our findings imply that Western mathematics education may be more effective in improving students’ ability to solve holistic modelling problems.  相似文献   

6.
Recognizing and responding to students' thinking is essential in teaching mathematics, especially when students provide incorrect solutions. This study examined, through a teaching scenario task, elementary preservice teachers' interpretations of and responses to a student's work on a task involving reflective symmetry. Findings revealed that a majority of preservice teachers identified the student's errors from conceptual aspects of reflection rather than from procedural aspects. However, when they responded to the student's errors, preservice teachers tried to cope with them by invoking procedural knowledge. This study also revealed the three types of responses and two different forms of address by preservice teachers to student errors; these categories might provide insight into the difficulties arising in communication between students and teachers.  相似文献   

7.
8.
The collective case study described herein explores solution approaches to a task requiring visual reasoning by students and teachers unfamiliar with such tasks. The context of this study is the teaching and learning of calculus in the Palestinian educational system. In the Palestinian mathematics curriculum the roles of visual displays rarely go beyond the illustrative and supplementary, while tasks which demand visual reasoning are absent. In the study, ten teachers and twelve secondary and first year university students were presented with a calculus problem, selected in an attempt to explore visual reasoning on the notions of function and its derivative and how it interrelates with conceptual reasoning. A construct named “visual inferential conceptual reasoning” was developed and implemented in order to analyze the responses. In addition, subjects’ reflections on the task, as well as their attitudes about possible uses of visual reasoning tasks in general, were collected and analyzed. Most participants faced initial difficulties of different kinds while solving the problem; however, in their solution processes various approaches were developed. Reflecting on these processes, subjects tended to agree that such tasks can promote and enhance conceptual understanding, and thus their incorporation in the curriculum would be beneficial.  相似文献   

9.
This research investigated how fourth and fifth grade students spontaneously ‘unpacked’ a word problem when generating a graphic representation to aid in problem solution. Relationships among the type of graphic representation produced, spatial visualization, drawing ability, gender, and problem solving also were examined and described. Instrumentation developed for the study included several math challenge tasks, a spatial visualization task, and a drawing task. For one of the math challenge tasks, students were instructed to draw a picture to assist them with problem solution. These graphic representations generated by students were rated as pictorial or as displaying some level of schematic representation. Schematic representations included germane information from the problem supportive of problem solution. Pictorial representations included expressive and extraneous elements not necessary for problem solution, with no schematic elements. Findings indicated that the majority of students rendered schematic representations, with girls more likely than boys to use schematic representations at a statistically significant level. Students who used schematic visual representations were more successful problem solvers than those pictorially representing problem elements. The more “schematic‐like” the visual representation, the more successful students were at problem solution. Drawing a pictorial representation in the math challenge task also was negatively correlated to drawing skill.  相似文献   

10.
This study investigates students' retention of mathematical knowledge and skills in two differential equations classes. Posttests and delayed posttests after 1 year were administered to students in inquiry‐oriented and traditional classes. The results show that students in the inquiry‐oriented class retained conceptual knowledge, as seen by their performance on modeling problems, and retained equal proficiency in procedural problems, when compared with students in the traditionally taught classes. The results of this study add additional support to the claim that teaching for conceptual understanding can lead to longer retention of mathematical knowledge.  相似文献   

11.
Spatial skills have been shown in various longitudinal studies to be related to multiple science, technology, engineering, and math (STEM) achievement and retention. The specific nature of this relation has been probed in only a few domains, and has rarely been investigated for calculus, a critical topic in preparing students for and in STEM majors and careers. We gathered data on paper-and-pencil measures of spatial skills (mental rotation, paper folding, and hidden figures); calculus proficiency (conceptual knowledge and released Advanced Placement [AP] calculus items); coordinating graph, table, and algebraic representations (coordinating multiple representations); and basic graph/table skills. Regression analyses suggest that mental rotation is the best of the spatial predictors for scores on released AP calculus exam questions (β = 0.21), but that spatial skills are not a significant predictor of calculus conceptual knowledge. Proficiency in coordinating multiple representations is also a significant predictor of both released AP calculus questions (β = 0.37) and calculus conceptual knowledge (β = 0.47). The spatial skills tapped by the measure for mental rotation may be similar to those required to engage in mental animation of typical explanations in AP textbooks and in AP class teaching as tested on the AP exam questions. Our measure for calculus conceptual knowledge, by contrast, did not require coordinating representations.  相似文献   

12.
13.
14.
Introductory statistics courses, which are important in preparing students for their daily lives, generally derive inferential statistics from informal knowledge. In this transition process, sampling distributions have an important place, yet research has shown that students often have difficulties with this concept. In order to increase their understanding of sampling distributions, students should have a strong conceptual foundation that is balanced with procedural knowledge. To address this issue, this study was designed to examine the relationship between college students’ procedural and conceptual knowledge of sampling distributions. With this aim in mind, an achievement test consisting of two sections – procedural and conceptual knowledge – was prepared. In answering the questions related to procedural knowledge, the participants were more successful in identifying the relationship between standard deviation of a population and sample means. However, they lacked theoretical knowledge about statements that they had heard or knew intuitively. Simulation activities provided in statistics courses may support students in developing their conceptual understanding in this regard.  相似文献   

15.
This study investigated sixth‐grade middle‐level students' geometric spatial development by gender and race within and between control and experimental groups at two middle schools as they participated in an Earth/Space unit. The control group utilized a regular Earth/Space curriculum and the experimental group used a National Aeronautics and Space Administration‐based curriculum. The quantitative data sources included the Lunar Phases Concept Inventory, Geometric Spatial Assessment, and the Purdue Spatial Visualization–Rotation Test. The results indicated the experimental males and females, and the students of color and white students in the experimental group showed significant gains in their understanding of geometric spatial visualization from pre‐ to post‐implementation. However, for the control group, the significant gains were limited to the males and the white students. The findings reveal that support is needed for males, females, and all racial groups to have the opportunity to develop their spatial reasoning, which in turn, increases students' scientific understanding.  相似文献   

16.
To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five principles: (a) encouragement to produce multiple solutions; (b) creating collaborative situations; (c) socio-cognitive conflicts; (d) providing tools for checking hypotheses; and (e) inviting students to reflect on solutions. We describe how a problem solving task designed according to the above principles, promoted students' understanding of the area concept. We show that the design afforded the surfacing of multiple solutions and justifications in various modalities (including gestures) and initiated peer argumentation, leading to deep learning of the area concept.  相似文献   

17.
This study focuses on the role of tools, provided by a computer microworld (C.AR.ME), on the strategies developed by 14-year-old students for the area measurement of a non-convex polygon. Students' strategies on a transformation and a comparison task were interpreted and classified into categories in terms of the tools used for their development. The analysis of the data shows that an environment providing the students with the opportunity to select various tools and asking them to produce solutions `in any possible way' can stimulate them to construct a plurality of solution strategies. The students selected tools appropriate for their cognitive development and expressed their own individual approaches regarding the concept of area measurement. The nature of tools used affected the nature of solution strategies that the students constructed. Moreover, all students were involved in the tasks and succeeded in completing them with more than one correct solution strategy thereby developing a broader view of the concept, although not all of them realized the same strategies. Three different approaches to area measurement emerged from the strategies which were constructed by the students in this microworld: automatic area measurement, provided by the environment, the operation of area measurement using spatial units and the use of area formulae. Almost all the students experienced qualitative aspects of area measurement through being involved in the process of covering areas using spatial units. Students also managed to use the area formulae meaningfully by studying it in relation to automatic area measurement and to area measurement using spatial units. Through these strategies, the concepts of conservation of area and its measurement as well as area formulae were viewed by the students as interrelated. Finally, some basic difficulties regarding area measurement were overcome in this computer environment.This revised version was published online in September 2005 with corrections to the Cover Date.  相似文献   

18.
This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns) after experiencing a carefully designed integrated lunar unit. Previous research with students using this lunar unit showed students making significant gains on lunar‐related concepts (both scientific and mathematical) on a Lunar Phases Concept Inventory (LPCI) ( Lindell & Olsen, 2002 ). Following the administration of single domain assessments, clinical interviews were conducted to ascertain students' problem solving strategies. Results allowed us to select four suitable multiple‐choice items per domain.  相似文献   

19.
This study analyzed the methods used to teach the multiplication of fractions in Turkish and American textbooks. Two Turkish textbooks and two American textbooks, Everyday Mathematics (EM) and Connected Mathematics 3 (CM), were analyzed. The analyses focused on the content and the nature of the mathematical problems presented in the textbooks. The findings of the study showed that the American textbooks aimed at developing conceptual understanding first and then procedural fluency, whereas the Turkish textbooks aimed at developing both concurrently. The American textbooks provided more opportunities for different computational strategies. The solutions to most problems in all textbooks required a single computational step, a numerical answer, and procedural knowledge. Furthermore, compared with the Turkish textbooks, the American textbooks contained a greater number of problems that required high-level cognitive skills such as mathematical reasoning.  相似文献   

20.
In this study, we aim to explore the extent of mathematics pre-service teachers’ ability to apply their procedural understanding combined with spatial perception for drawing conceptual conclusions related to angles in a pyramid. The participants are 16 pre-service high school mathematics teachers. They have studied solid geometry during one academic year, solving problems with various 3-D geometric figures including pyramids and engaging in activities designed to develop spatial perception. At the end of the year, they have taken a final test which examines procedural understanding of 3-D geometric figures as well as relational understanding and spatial perception regarding angles in pyramids. The results illustrate that attainments of the majority of the pre-service teachers in problems requiring only procedural understanding are higher than the attainments in problems which require relational understanding. The results also lead to the assumption that relational understanding of learned material requires application of special teaching methods. Hence, we recommend integrating in the syllabus appropriate courses that focus on the development of this type of understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号