首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, efficient numerical schemes are proposed for solving the water wave model with nonlocal viscous term that describe the propagation of surface water wave. By using the Caputo fractional derivative definition to approximate the nonlocal fractional operator, finite difference method in time and spectral method in space are constructed for the considered model. The proposed method employs known 5/2 order scheme for fractional derivative and a mixed linearization for the nonlinear term. The analysis shows that the proposed numerical scheme is unconditionally stable and error estimates are provided to predict that the second order backward differentiation plus 5/2 order scheme converges with order 2 in time, and spectral accuracy in space. Several numerical results are provided to verify the efficiency and accuracy of our theoretical claims. Finally, the decay rate of solutions is investigated.  相似文献   

2.
The main aim of this paper is to propose two semi-implicit Fourier pseudospectral schemes for the solution of generalized time fractional Burgers type equations, with an analysis of consistency, stability, and convergence. Under some assumptions, the unconditional stability of the schemes is shown. In implementation of these schemes, the fast Fourier transform (FFT) can be used efficiently to improve the computational cost. Various test problems are included to illustrate the results that we have obtained regarding the proposed schemes. The results of numerical experiments are compared with analytical solutions and other existing methods in the literature to show the efficiency of proposed schemes in both accuracy and CPU time. As numerical solution of fractional stochastic nonlinear partial differential equations driven by Brownian motions are among current related research interests, we report the performance of these schemes on stochastic time fractional Burgers equation as well.  相似文献   

3.
In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of the reaction-diffusion model of fractional order which describe the evolution of the bacterium Bacillus subtilis, which grows on the surface of thin agar plates. The fractional derivatives are described in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

4.
In this paper, strength of fractional adaptive signal processing is exploited for parameter identification of control autoregressive autoregressive (CARAR) systems using normalized version of fractional least mean square (FLMS) and its recently introduced modification of type 1 and 2. The adaptation performance of the proposed normalized FLMS methods is compared with standard counterparts for CARAR identification model by taking different noise levels as well as fractional orders. The results of the statistical analyses are used to validate the consistency of the proposed normalized fractional adaptive methodologies in terms of convergence, accuracy and robustness. The reliability and effectiveness of the design schemes is further validated through consistently approaching the desired identification parameters based on performance metrics of mean square error, variance account for and Nash–Sutcliffe efficiency.  相似文献   

5.
By the rapid growth of available data, providing data-driven solutions for nonlinear (fractional) dynamical systems becomes more important than before. In this paper, a new fractional neural network model that uses fractional order of Jacobi functions as its activation functions for one of the hidden layers is proposed to approximate the solution of fractional differential equations and fractional partial differential equations arising from mathematical modeling of cognitive-decision-making processes and several other scientific subjects. This neural network uses roots of Jacobi polynomials as the training dataset, and the Levenberg-Marquardt algorithm is chosen as the optimizer. The linear and nonlinear fractional dynamics are considered as test examples showing the effectiveness and applicability of the proposed neural network. The numerical results are compared with the obtained results of some other networks and numerical approaches such as meshless methods. Numerical experiments are presented confirming that the proposed model is accurate, fast, and feasible.  相似文献   

6.
In this paper, we propose a nonlinear fractional order model in order to explain and understand the outbreaks of influenza A(H1N1). In the fractional model, the next state depends not only upon its current state but also upon all of its historical states. Thus, the fractional model is more general than the classical epidemic models. In order to deal with the fractional derivatives of the model, we rely on the Caputo operator and on the Grünwald–Letnikov method to numerically approximate the fractional derivatives. We conclude that the nonlinear fractional order epidemic model is well suited to provide numerical results that agree very well with real data of influenza A(H1N1) at the level population. In addition, the proposed model can provide useful information for the understanding, prediction, and control of the transmission of different epidemics worldwide. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The dynamic analysis of viscoelastic pipes conveying fluid is investigated by the variable fractional order model in this article. The nonlinear variable fractional order integral-differential equation is established by introducing the model into the governing equation. Then the Shifted Legendre Polynomials algorithm is first presented for dealing with this kind of equations. The convergence analysis and numerical example verify that the algorithm is an effective and accurate technique for addressing this type complicated equation. Numerical results for dynamic analysis of viscoelastic pipes conveying fluid show the effect of parameters on displacement, acceleration, strain and stress. It also indicates that how dynamic properties are affected by the variable fractional order and fluid velocity varying. Most of all, the proposed algorithm has enormous potentials for the problem of high precision dynamics under the variable fractional order model.  相似文献   

8.
非线性灰色Bernoulli模型相对于普通的GM(1,1)模型,能更好的反映数据序列的非线性增长趋势.分数阶蕴含"in between"思想,分数阶累加灰色模型相对一般的累加灰色模型具有更好的预测效果和适应性.为了更好地符合新信息优先原理,实现最小信息的最大挖掘,构造了分数阶反向累加非线性灰色Bernoulli模型,即FAONGBM(1,1)模型,并给出了该模型的具体求解过程.在参数优化方面,本文通过粒子群优化(PSO)算法实现分数阶阶数和非线性指数的最优搜索.最后运用FAONGBM(1,1)模型对我国水力发电总量进行实证分析,结果证明所提出的模型具有良好的拟合精度和预测精度.  相似文献   

9.
In the paper, we first propose a Crank-Nicolson Galerkin-Legendre (CN-GL) spectral scheme for the one-dimensional nonlinear space fractional Schrödinger equation. Convergence with spectral accuracy is proved for the spectral approximation. Further, a Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional nonlinear space fractional Schrödinger equation is developed. The proposed schemes are shown to be efficient with second-order accuracy in time and spectral accuracy in space which are higher than some recently studied methods. Moreover, some numerical results are demonstrated to justify the theoretical analysis.  相似文献   

10.
Option pricing models are often used to describe the dynamic characteristics of prices in financial markets. Unlike the classical Black–Scholes (BS) model, the finite moment log stable (FMLS) model can explain large movements of prices during small time steps. In the FMLS, the second-order spatial derivative of the BS model is replaced by a fractional operator of order α which generates an α-stable Lévy process. In this paper, we consider the finite difference method to approximate the FMLS model. We present two numerical schemes for this approximation: the implicit numerical scheme and the Crank–Nicolson scheme. We carry out convergence and stability analyses for the proposed schemes. Since the fractional operator routinely generates dense matrices which often require high computational cost and storage memory, we explore three methods for solving the approximation schemes: the Gaussian elimination method, the bi-conjugate gradient stabilized method (Bi-CGSTAB) and the fast Bi-CGSTAB (FBi-CGSTAB) in order to compare the cost of calculations. Finally, two numerical examples with exact solutions are presented where we also use extrapolation techniques to achieve higher-order convergence. The results suggest that the proposed schemes are unconditionally stable and convergent, and the FMLS model is useful for pricing options.  相似文献   

11.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

12.
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative. The method is developed by dividing the domain into a number of subintervals, and applying the quadratic interpolation on each subinterval. The method is shown to be unconditionally stable, and for general nonlinear equations, the uniform sharp numerical order 3 − $ν$ can be rigorously proven for sufficiently smooth solutions at all time steps. The proof provides a general guide for proving the sharp order for higher-order schemes in the nonlinear case. Some numerical examples are given to validate our theoretical results.  相似文献   

13.
This study considers the problem of control and synchronization between fractional‐order and integer‐order, N‐components reaction‐diffusion systems with nonidentical coefficients and different nonlinear parts. The control scheme is designed using the Lyapunov direct method. The results are exemplified by two significant biochemical models, namely, the fractional‐order Lengyel‐Epstein model and the Gray‐Scott model. To illustrate the effectiveness of the proposed scheme, numerical simulations are performed in one and two space dimensions using Homotopy Analysis Method (HAM).  相似文献   

14.
In this paper, the modified fractional reduced differential transform method (MFRDTM) has been proposed and it is implemented for solving fractional KdV (Korteweg-de Vries) equations. The fractional derivatives are described in the Caputo sense. In this paper, the reduced differential transform method is modified to be easily employed to solve wide kinds of nonlinear fractional differential equations. In this new approach, the nonlinear term is replaced by its Adomian polynomials. Thus the nonlinear initial-value problem can be easily solved with less computational effort. In order to show the power and effectiveness of the present modified method and to illustrate the pertinent features of the solutions, several fractional KdV equations with different types of nonlinearities are considered. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of fractional KdV equations.  相似文献   

15.
In this paper, we apply the dual reciprocity boundary elements method for the numerical solution of two‐dimensional linear and nonlinear time‐fractional modified anomalous subdiffusion equations and time‐fractional convection–diffusion equation. The fractional derivative of problems is described in the Riemann–Liouville and Caputo senses. We employ the linear radial basis function for interpolation of the nonlinear, inhomogeneous and time derivative terms. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity which appears in the nonlinear problems under consideration. The accuracy and efficiency of the proposed schemes are checked by five test problems. The proposed method is employed for solving some examples in two dimensions on unit square and also in complex regions to demonstrate the efficiency of the new technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The pivotal aim of the present work is to find the numerical solution for fractional Benney–Lin equation by using two efficient methods, called q ‐homotopy analysis transform method and fractional natural decomposition method. The considered equation exemplifies the long waves on the liquid films. Projected methods are distinct with solution procedure and they are modified with different transform algorithms. To illustrate the reliability and applicability of the considered solution procedures we consider eight special cases with different initial conditions. The fractional operator is considered in Caputo sense. The achieved results are drowned through two and three‐dimensional plots for different Brownian motions and classical order. The numerical simulations are presented to ensure the efficiency of considered techniques. The behavior of the obtained results for distinct fractional order is captured in the present framework. The outcomes of the present investigation show that, the considered schemes are efficient and powerful to solve nonlinear differential equations arise in science and technology.  相似文献   

17.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

18.
In this paper, the variational iteration method and the Adomian decomposition method are implemented to give approximate solutions for linear and nonlinear systems of differential equations of fractional order. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. This paper presents a numerical comparison between the two methods for solving systems of fractional differential equations. Numerical results show that the two approaches are easy to implement and accurate when applied to differential equations of fractional order.  相似文献   

19.
In this paper, an efficient and accurate computational method based on the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for solving a class of nonlinear multi-order fractional differential equations (NMFDEs). To do this, a new operational matrix of fractional order integration in the Riemann–Liouville sense for the CWs is derived. Hat functions (HFs) and the collocation method are employed to derive a general procedure for forming this matrix. By using the CWs and their operational matrix of fractional order integration and Galerkin method, the problems under consideration are transformed into corresponding nonlinear systems of algebraic equations, which can be simply solved. Moreover, a new technique for computing nonlinear terms in such problems is presented. Convergence of the CWs expansion in one dimension is investigated. Furthermore, the efficiency and accuracy of the proposed method are shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As a useful application, the proposed method is applied to obtain an approximate solution for the fractional order Van der Pol oscillator (VPO) equation.  相似文献   

20.
A new framework for development of order 3.0 weak Taylor scheme towards stochastic modeling and dynamics of coupled nonlinear systems is presented. The proposed method is derived by including third order multiple stochastic integral terms of Ito–Taylor expansion and developing them for a wide class of stochastic nonlinear systems. For computing the system responses of linear and a wide class of nonlinear structural systems, the use of lower order integration schemes is sufficient. But for highly non-linear stochastically driven systems like base isolated hysteretic systems and degrading stochastic systems the evaluation of higher order terms is necessary. Additionally, the use of higher order integration schemes for stochastic dynamics of higher dimensional nonlinear systems remains a challenge due to the arising mathematical complexities with the increase in the number of DOFs (degrees-of-freedom) which really necessitates the development of the proposed algorithm. The proposed algorithm is verified using a representative class of coupled nonlinear system in presence and absence of nonlinear degradation and hysteretic oscillators. The efficiency of the proposed numerical scheme over classical integration schemes is demonstrated through a practical engineering problem. Finally, an automated extension of the proposed algorithm is presented by generalizing it for a system of N-DOFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号