首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王强  徐涛  姚永涛 《应用数学和力学》2022,43(10):1105-1112
基于有限差分法开发了高超声速流动与换热问题气热耦合仿真求解器,运用该求解器对三种典型高超声速流动与换热问题开展了仿真研究,得到了相应的气动参数、热流密度分布。高超声速后台阶的存在使表面气动参数、热流分布不再连续;随着缝深的提高,缝隙局部流速迅速降低,对流换热效应减弱;高超声速无限长圆管绕流中,边界层外部区域气动参数随时间变化不大,边界层内存在较大的温度梯度,壁面温度随时间升高。三个算例的仿真结果均与试验测量值进行了对比,验证了所开发的求解器的计算能力。  相似文献   

2.
This paper presents a methodology combining experimental measurements with computational modeling to find the heat flux extracted during spray cooling of a metal surface. Controlled experiments are performed to impinge air-mist spray onto a metal probe surface while applying induction heating to follow a desired temperature history. A transient axisymmetric computational model of induction heating which couples electromagnetics and heat conduction has been developed and validated with a test problem. The model is calibrated to match transient dry measurements and then used to simulate a steady-state air-mist spray cooling experiment in order to quantify the heat extracted from the probe surface by the boiling water droplets. A detailed example is presented to illustrate this approach.  相似文献   

3.
Switched reluctance motors (SRM) are attracting much attention because of their special advantages. Generated heat, due to losses, can reduce the life time of SRMs. Therefore, taking into account thermal modeling helps to improve their performance and increase their life time. In this paper, a lumped thermal model of SRM based on the analogue circuit of conductive and convective thermal resistances is proposed. First the heat transfer equations were applied for modeling of each motor part as a thermal equivalent circuit. Then, the thermal modeling of whole SRM was done via assembling all these sub-circuits. For validity of the obtained model on a wide range of geometrical and structural properties of motor, apt heat transfer relations have been used. This comprehensive model is used to investigate the influence of dimensions on heat transfer in SRM. Finally, an optimal design of the stator yoke dimensions has been reached concerning the mechanical aspects without degrading electromagnetic characteristics of SRM.  相似文献   

4.
A finite element procedure for hyper-elastic materials such as rubber has been developed to estimate the temperature rise during cyclic loading. The irreversible mechanical work developed in rubber has been used to determine the heat generation rate for carrying out thermal analysis. The evaluation of the heat energy is dependent on the strains. The finite element analysis assumes Green–Lagrangian strain displacement relations, Mooney–Rivlin strain energy density function for constitutive relationship, incremental equilibrium equations, and Total Lagrangian approach and the stress and strain of the rubber-like materials are evaluated using a degenerated shell element with assumed strain field technique, considering both material and geometric non-linearities. A transient heat conduction analysis has been carried out to estimate the temperature rise for different time steps in rubber-like materials using Galerkin's formulations. A numerical example is presented and the computed temperature values for various load steps agree closely with the experimental results reported in the literature.  相似文献   

5.
This paper considers the classical problem of hydrodynamic and thermal boundary layers over a flat plate in a uniform stream of fluid. It is well known that similarity solutions of the energy equation are possible for the boundary conditions of constant surface temperature and constant heat flux. However, no such solution has been attempted for the convective surface boundary condition. The paper demonstrates that a similarity solution is possible if the convective heat transfer associated with the hot fluid on the lower surface of the plate is proportional to x?1/2. Numerical solutions of the resulting similarity energy equation are provided for representative Prandtl numbers of 0.1, 0.72, and 10 and a range of values of the parameter characterizing the hot fluid convection process. For the case of constant heat transfer coefficient, the same data provide local similarity solutions.  相似文献   

6.
研究了在速度滑移现象存在下,上随体Oldroyd-B流体绕加热的楔形体的非稳态流动。采用松弛-延迟热通量模型,模拟了传热过程和热延迟时间对传热的影响,通过考虑浮升力、热辐射和对流换热边界条件,进一步研究了流动及传热特性。利用同伦分析方法获得常微分方程组的近似解析解,发现滑移参数的增大可以促进流体的流动,以及流体的温度随热辐射参数增大而升高。此外还发现,温度场在热松弛时间和热延迟时间中出现相反的变化趋势。  相似文献   

7.
In this paper, a spatial fractional-order thermal transport equation with the Caputo derivative is proposed to describe convective heat transfer of nanofluids within disordered porous media in boundary layer flow. This equation arises naturally when the effect of anomalous migration of nanoparticles on heat transfer is considered. The numerical results show that local Nusselt numbers of four different kinds of nanofluids are all inversely proportional to the fractional derivative exponent β. Based on this finding, it is concluded that the anomalous diffusion of nanoparticles improves the convective heat transfer of nanofluids and the space fractional thermal transport equation may serve as a candidate model for studying nanofluids. Additionally, the effects of other involved physical parameters on temperature distribution and Nusselt number are presented and analyzed.  相似文献   

8.
In the present paper, an axisymmetric two-dimensional model for powder mixed electric discharge machining (PMEDM) has been developed using the finite element method (FEM). The model utilizes the several important aspects such as temperature-sensitive material properties, shape and size of heat source (Gaussian heat distribution), percentage distribution of heat among tool, workpiece and dielectric fluid, pulse on/off time, material ejection efficiency and phase change (enthalpy) etc. to predict the thermal behaviour and material removal mechanism in PMEDM process. The developed model first calculates the temperature distribution in the workpiece material using ANSYS (version 5.4) software and then material removal rate (MRR) is estimated from the temperature profiles. The effect of various process parameters on temperature distributions along the radius and depth of the workpiece has been reported. Finally, the model has been validated by comparing the theoretical MRR with the experimental one obtained from a newly designed experimental setup developed in the laboratory.  相似文献   

9.
The gasification behavior of a fuel droplet has been studied. The convective heat transfer is focused on in most literature on droplet evaporation. In this paper, a mathematic model of droplet evaporation is improved. Considering the presence of simultaneous mass and heat transfer at the interface between phases, a proper heat transfer equation for droplet evaporation model is established. Based on the model, a computer simulation program was developed, and the predictions of the model are compared with the experimental data. Sample calculations show the capabilities of the model for droplet evaporation.  相似文献   

10.
In the framework of Extended Irreversible Thermodynamics, a model of heat transport due to phonons and electrons is developed. Compatibility with Second Law of Thermodynamics is exploited through a generalized Coleman-Noll procedure. A?system of nonlinear partial differential equations, ruling the evolution of the partial heat fluxes, is derived. Propagation of temperature waves through one-dimensional heat conductors is investigated as well.  相似文献   

11.
Thermal field problems including heat exchange by radiation lead to nonlinear system equations with a high number of inputs and outputs as radiation heat fluxes correspond to the fourth power of the temperature and thermal loads are distributed over the whole surface. In an alternative approach presented here, radiation is defined as a part of the load vector. Thus, the system matrices are constant. Furthermore, loads changing synchronously during operation are grouped into one column of the input matrix and load vector snapshots are used to consider the radiation heat fluxes. Hence, the Krylov Subspace Method can be applied to significantly reduce the system dimension and the computation times allowing transient thermal parameter studies. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
This present study consists of a numerical investigation of transient heat transfer in channel flow of an electrically conducting variable viscosity Boussinesq fluid in the presence of a magnetic field and thermal radiation. The temperature dependent nature of viscosity is assumed to follow an exponentially model and the system exchanges heat with the ambient following Newton’s law of cooling. The governing nonlinear equations of momentum and energy transport are solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that combined effect of thermal radiation, magnetic field, viscosity variation and convective cooling have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

13.
A two-dimensional, steady state model of convective film-wise condensation of a vapor and noncondensable gas mixture flowing downward inside a vertical tube is developed. The mass transfer at the film and gas interface is treated as diffusion controlled process. The noncondensable effect on the condensation is taken into account through boundary layer analysis of species concentration and energy balance. Numerical predictions were obtained for the condensation heat transfer coefficient of turbulent vapor flow associated with laminar condensate. The predictions were compared with the experimental data in the literature to assess the model. Noncondensable mass fraction and vapor–noncondensable mixture temperature were presented in the form of radial and axial profiles.  相似文献   

14.
A mathematical model of fluid flow across a rod bundle with volumetric heat generation has been built. The rods are heated with volumetric internal heat generation. To construct the model, a volume average technique (VAT) has been applied to momentum and energy transport equations for a fluid and a solid phase to develop a specific form of porous media flow equations. The model equations have been solved with a semi-analytical Galerkin method. The detailed velocity and temperature fields in the fluid flow and the solid structure have been obtained. Using the solution fields, a whole-section drag coefficient Cd and a whole-section Nusselt number Nu have also been calculated. To validate the developed solution procedure, the results have been compared to the results of a finite volume method. The comparison shows an excellent agreement. The present results demonstrate that the selected Galerkin approach is capable of performing calculations of heat transfer in a cross-flow where thermal conductivity and internal heat generation in a solid structure has to be taken into account. Although the Galerkin method has limited applicability in complex geometries, its highly accurate solutions are an important benchmark on which other numerical results can be tested.  相似文献   

15.
The time-efficient yet accurate thermal modeling of the battery cells for electric and hybrid electric vehicles is essential improving the performance, safety, and lifetime of the battery system. This paper presents a spatial-resolution, lumped-capacitance (LC) thermal model for cylindrical battery cells under high Biot number (Bi ? 1) conditions where the classical LC thermal model is generally inapplicable because of a significant temperature variation in the cell volume. The spatial-resolution LC model was formulated using zero- and first-order Hermite integral approximations. For model validation, a one-dimensional, transient analytical (exact) solution using Green functions was obtained for a cylindrical Li-ion battery cell with uniform volumetric battery heat generation of Joule and entropic heating under convective cooling boundary conditions. It was found from the comparison of the results that the spatial-resolution LC thermal model can accurately and quickly predicts the cell temperatures (core, skin and area-averaged) under various dynamic battery duty cycles even for high Biot numbers due to highly convective conditions such as liquid cooling.  相似文献   

16.
Metallic materials present a complex behavior during heat treatment processes. In a certain temperature range, change of temperature induces a phase transformation of metallic structure, which alters physical properties of the material. Indeed, measurements of specific heat and conductivity show strong temperature-dependence during processes such as quenching of steel. Several mathematical models, as solid mixtures and thermal–mechanical coupling, for problems of heat conduction in metallic materials, have been proposed. In this work, we take a simpler approach without thermal–mechanical coupling of deformation, by considering the nonlinear temperature-dependence of thermal parameters as the sole effect due to those complex behaviors. The above discussion of phase transformation of metallic materials serves only as a motivation for the strong temperature-dependence as material properties. In general, thermal properties of materials do depend on the temperature, and the present formulation of heat conduction problem may be served as a mathematical model when the temperature-dependence of material parameters becomes important. For this mathematical model we present the error estimate using the finite element method for the continuous-time case.  相似文献   

17.
A numerical study has been executed to analyze the effects of Reynolds and Prandtl number on mixed convective flow and heat transfer characteristics inside a ventilated cavity in presence of a heat-generating solid circular obstacle placed at the center. The inlet opening is at the bottom of the left wall, while the outlet one is at the top of the right wall and all the walls of the cavity are considered to be adiabatic. Galerkin weighted residual finite element method is used to solve the governing equations of mass, momentum and energy. Results are presented in terms of streamlines, isotherms, the average Nusselt number, the Drag force and the average fluid temperature in the cavity for different combinations of controlling parameters namely, Reynolds number, Prandtl number and Richardson number. The results indicate that the flow and thermal fields as well as the heat transfer rate, the Drag force and the average fluid temperature in the cavity depend significantly on the mentioned parameters.  相似文献   

18.
热防护服-空气-皮肤热传导模型及其解析解   总被引:3,自引:2,他引:1       下载免费PDF全文
建立了高温环境下热防护服-空气-皮肤的热传导模型.利用热传导时,层合界面间温度相等和热流量连续的条件,结合微分思想,用分离变量法推导了微小时间段内模型热传导的解析解,然后通过循环得到整个时域内的解析解.利用求得的解析解分析了在80 ℃的环境温度下模型各位置温度和热流密度的变化情况,以及在不同环境温度下皮肤表面温度变化和热损伤情况.该求解方法可用来分析一般层合结构传热问题,计算结果对热防护服的设计和效果评价具有一定的参考意义.  相似文献   

19.
本文研究了变热特性参数下,根部温度作周期性变化的肋片传热情况.应用摄动法求解控制微分方程;并且采用打靶法和叠加原理进行数值计算,求解过程是嵌进的、非迭代的.对某种形状的肋片而言,当肋片根部温度作周期性变化时,其传热过程受以下几个参数的影响:E──导热系数的温度系数;N──肋片传热的特性参数;ε──温度波动的幅度参数;B──温度波动的频率;以及对流系数的变化模式等.文中给出了这些参数变化时对肋片的温度分布及热流率、肋效率等的影响情况.所得结果,不但具有理论价值,而且对工程设计也有现实指导意义.  相似文献   

20.
A finite integral transform (FIT)-based analytical solution to the dual phase lag (DPL) bio-heat transfer equation has been developed. One of the potential applications of this analytical approach is in the field of photo-thermal therapy, wherein the interest lies in determining the thermal response of laser-irradiated biological samples. In order to demonstrate the applicability of the generalized analytical solutions, three problems have been formulated: (1) time independent boundary conditions (constant surface temperature heating), (2) time dependent boundary conditions (medium subjected to sinusoidal surface heating), and (3) biological tissue phantoms subjected to short-pulse laser irradiation. In the context of the case study involving biological tissue phantoms, the FIT-based analytical solutions of Fourier, as well as non-Fourier, heat conduction equations have been coupled with a numerical solution of the transient form of the radiative transfer equation (RTE) to determine the resultant temperature distribution. Performance of the FIT-based approach has been assessed by comparing the results of the present study with those reported in the literature. A comparison of DPL-based analytical solutions with those obtained using the conventional Fourier and hyperbolic heat conduction models has been presented. The relative influence of relaxation times associated with the temperature gradients (τT) and heat flux (τq) on the resultant thermal profiles has also been discussed. To the best of the knowledge of the authors, the present study is the first successful attempt at developing complete FIT-based analytical solution(s) of non-Fourier heat conduction equation(s), which have subsequently been coupled with numerical solutions of the transient form of the RTE. The work finds its importance in a range of areas such as material processing, photo-thermal therapy, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号