首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

2.
Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm G, and ui ∈ V(Cm). The G - E(Cm) are m trees, denoted by Ti, i = 1, 2,..., m. For i = 1, 2,..., m, let eui be the excentricity of ui in Ti and ec = max{eui : i = 1, 2 , m}. Let κ = ec+1. Forj = 1,2,...,k- 1, let δij = max{dv : dist(v, ui) = j,v ∈ Ti}, δj = max{δij : i = 1, 2,..., m}, δ0 = max{dui : ui ∈ V(Cm)}. Then λ1(G)≤max{max 2≤j≤k-2 (√δj-1-1+√δj-1),2+√δ0-2,√δ0-2+√δ1-1}. If G ≌ Cn, then the equality holds, where λ1 (G) is the largest eigenvalue of the adjacency matrix of G.  相似文献   

3.
In this paper, we consider the functional differential equation with impulsive perturbations
$ \left\{ {{*{20}{c}} {{x^{\prime}}(t) = f\left( {t,{x_t}} \right),} \hfill & {t \geq {t_0},\quad t \ne {t_k},\quad x \in {\mathbb{R}^n},} \hfill \\ {\Delta x(t) = {I_k}\left( {t,x\left( {{t^{-} }} \right)} \right),} \hfill & {t = {t_k},\quad k \in {\mathbb{Z}^{+} }.} \hfill \\ } \right. $ \left\{ {\begin{array}{*{20}{c}} {{x^{\prime}}(t) = f\left( {t,{x_t}} \right),} \hfill & {t \geq {t_0},\quad t \ne {t_k},\quad x \in {\mathbb{R}^n},} \hfill \\ {\Delta x(t) = {I_k}\left( {t,x\left( {{t^{-} }} \right)} \right),} \hfill & {t = {t_k},\quad k \in {\mathbb{Z}^{+} }.} \hfill \\ \end{array} } \right.  相似文献   

4.
Let m ≥ 2, the numbers p 1,…, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ L p1(?1), …, γ m \({L^{{p_m}}}\)(?1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces L p (?1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ km are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ?1.  相似文献   

5.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

6.
Suppose that m ≥ 2, numbers p 1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{?^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{?^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in L p (?1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{?^1}} \right)\) and \(L_{ak}^{pk}\left( {{?^1}} \right) \subset {L^{pk}}\left( {{?^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ?1 of a product of functions to be bounded is also given.  相似文献   

7.
This paper deals with the following mixed problem for Quasilinear hyperbolic equationsThe M order uniformly valid asymptotic solutions are obtained and there errors areestimated.  相似文献   

8.
We study the Grushin operators acting on \(\mathbb{R}_x^{{d_1}} \times \mathbb{R}_t^{{d_2}}\) and defined by the formula \(L = - \sum\nolimits_{j = 1}^{{d_1}} {\partial _{{x_j}}^2} - {\sum\nolimits_{j = 1}^{{d_1}} {\left| {{x_j}} \right|} ^2}\sum\nolimits_{k = 1}^{{d_2}} {\partial _{{t_k}}^2} \). We establish a restriction theorem associated with the considered operators. Our result is an analogue of the restriction theorem on the Heisenberg group obtained by D. M¨uller [Ann. of Math., 1990, 131: 567–587].  相似文献   

9.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

10.
This paper is concerned with a nonlocal hyperbolic system as follows utt = △u + (∫Ωvdx )^p for x∈R^N,t〉0 ,utt = △u + (∫Ωvdx )^q for x∈R^N,t〉0 ,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N, where 1≤ N ≤3, p ≥1, q ≥ 1 and pq 〉 1. Here the initial values are compactly supported and Ω belong to R^N is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.  相似文献   

11.
For the strongly coupled system of M ≥ 3 competing species:-Δ[(d_i +Σ_(j=1)~Mβ(_i_j)u_j)u_i]=(a_i-b_i)u_i-ku_iΣ_(j≠i)u_j, i=1,..., M,we prove the uniqueness of the limiting configuration as k →∞ under suitable conditions. Moreover,we prove that the limiting configuration minimizes a variational problem associated to the strongly coupled system among the segregated states with the same boundary conditions.  相似文献   

12.
In this paper we study the uniqueness of nontrivial positive solutions for the following second order nonlinear elliptic system:
$\left\{\begin{aligned} -\Delta u_1+V_1(|x|) u_1 &= \mu_1 u_1^3+\beta u_1u_2^2 & &\quad{\rm in} \ {\mathbb R}^{N},\\ -\Delta u_2+V_2(|x|)u_2&=\beta u_1^2u_2+\mu_2 u_2^3&&\quad{\rm in} \ {\mathbb R}^{N}.\end{aligned}\right.$\left\{\begin{aligned} -\Delta u_1+V_1(|x|) u_1 &= \mu_1 u_1^3+\beta u_1u_2^2 & &\quad{\rm in} \ {\mathbb R}^{N},\\ -\Delta u_2+V_2(|x|)u_2&=\beta u_1^2u_2+\mu_2 u_2^3&&\quad{\rm in} \ {\mathbb R}^{N}.\end{aligned}\right.  相似文献   

13.
Gordon  Yehoram  Junge  Marius 《Positivity》1997,1(1):7-43
We extend classical volume formulas for ellipsoids and zonoids to p-sums of segments $${vol}\left( {\sum\limits_{i=1}^m { \oplus_p } [ -x_i ,x_i ]} \right)^{1/n} \sim_{c_p} n^{ - \frac{1}{{p'}}} \left( {\sum\limits_{card(I) = n} {|\det (x_i)_i |^p}} \right)^{\frac{1}{{pn}}}$$ where x1,...,xm are m vectors in $\mathbb{R}^n ,\frac{1}{p} + \frac{1}{{p\prime }} = 1$ . According to the definition of Firey, the Minkowski p-sum of segments is given by $$\sum\limits_{i = 1}^m { \oplus _p [ - x_{i,} x_i ]} = \left\{ {\sum\limits_{i = 1}^m {\alpha _i } x_i \left| {\left( {\sum\limits_{i = 1}^m {|\alpha _i |^{p^\prime } } } \right)} \right.^{\frac{1}{{p^\prime }}} \leqslant 1} \right\}.$$ We describe related geometric properties of the Lewis maps associated to classical operator norms.  相似文献   

14.
In this paper, we consider the ground-states of the following M-coupled system:
$$\left\{ {\begin{array}{*{20}{c}}{ - \Delta {u_i} = \sum\limits_{j = 1}^M {{k_{ij}}\frac{{2{q_{ij}}}}{{2*}}{{\left| {{u_j}} \right|}^{{p_{ij}}}}{{\left| {{u_i}} \right|}^{{q_{ij}} - {2_{{u_i}}}}},x \in {\mathbb{R}^N},} } \\{{u_i} \in {D^{1,2}}\left( {{\mathbb{R}^N}} \right),i = 1,2, \ldots ,M,}\end{array}} \right.$$
where \(p_{ij} + q_{ij} = 2*: = \frac{{2N}}{{N - 2}}(N \geqslant 3)\). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.
  相似文献   

15.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

16.
As a generalization to the heat semigroup on the Heisenberg group, the diffusion semigroup generated by the subelliptic operator L :=1/2 sum from i=1 to m X_i~2 on R~(m+d):= R~m× R~d is investigated, where X_i(x, y) = sum (σki?xk) from k=1 to m+sum (((A_lx)_i?_(yl)) from t=1 to d,(x, y) ∈ R~(m+d), 1 ≤ i ≤ m for σ an invertible m × m-matrix and {A_l}_1 ≤ l ≤d some m × m-matrices such that the Hrmander condition holds.We first establish Bismut-type and Driver-type derivative formulas with applications on gradient estimates and the coupling/Liouville properties, which are new even for the heat semigroup on the Heisenberg group; then extend some recent results derived for the heat semigroup on the Heisenberg group.  相似文献   

17.
suppose that p is a Markov transition matrix on the sapce E,and {ui}(\[i \in E\])is an initial distribution.The Matrix (ui,pij)is called a probility-flow.we obtain the following theorem:For any initial distribution {ui}(ui>0)which need not be stationary,we have \[{u_i}{p_{ij}} = {u_i}{p_{ij}}^d + \sum\limits_{k \in K} {{r_{ij}}^{(k)}} + \sum\limits_{i \in L} {{g_{ij}}^{(l)}} \] where, 1) \[{u_i}{p_{ij}}^d = {u_i}{p_{ij}}^d(i,j \in E)\] \[{p_{ij}}^d\]is called the detailed balabce part of p; 2)For each \[k \in K\](at most denumerable),there is a circular road \[{a^{(k)}} = (i_1^{(k)},i_2^{(k)},...,i_n^{(k)},i_1^{(k)})\](\[n \geqslant 3,{i_s} \ne {i_t}(S \ne t,1 \leqslant S,t \leqslant n\]),and there is a constant \[{c_k} > 0\],such that \[{r_{ij}}^{(k)} = \left\{ {\begin{array}{*{20}{c}} {{c_k},(i,j) \in {a^{(k)}}} \\ {0,(else)} \end{array}} \right.\] and \[\sum\limits_{k \in K} {{r_{ij}}^{(k)}} \] is called the circulation part of p; 3)For any \[l \in L\](at most denumerable),there is a read in E; \[{r^{(l)}} = (j_1^{(1)},...,j_n^{(l)})\] \[n \geqslant 2,{j_s}^{(l)} \ne {j_t}^{(l)}(s \ne t,l \leqslant s,t \leqslant n)\],and there is a constant \[{d_l} > 0\],such that \[{g_{ij}}^{(l)} = \left\{ {\begin{array}{*{20}{c}} {{d_l},(i,j) \in {r^l}} \\ {0,(else)} \end{array}} \right.\] and \[\sum\limits_{i \in L} {{g_{ij}}^{(l)}} \]is called the divergent part of p. This theorem is extetion of the theorem of circulation decomposition given by Qian Minping.  相似文献   

18.
In this paper we consider the following elliptic system in \mathbbR3{\mathbb{R}^3}
$\qquad\left\{{ll}-\Delta u+u+\lambda K(x)\phi u=a(x)|u|^{p-1}u \quad &x \in {\mathbb{R}}^{3}\\ -\Delta \phi=K(x)u^{2} \quad &x \in {\mathbb{R}}^{3}\right.$\qquad\left\{\begin{array}{ll}-\Delta u+u+\lambda K(x)\phi u=a(x)|u|^{p-1}u \quad &x \in {\mathbb{R}}^{3}\\ -\Delta \phi=K(x)u^{2} \quad &x \in {\mathbb{R}}^{3}\end{array}\right.  相似文献   

19.
We consider the existence of bound states for the coupled elliptic system
where n ≤ 3. Using the fixed point index in cones we prove the existence of a five-dimensional continuum of solutions (λ1, λ2, μ 1, μ 2, β, u 1, u 2) bifurcating from the set of semipositive solutions (where u 1 = 0 or u 2 = 0) and investigate the parameter range covered by . Dedicated to Albrecht Dold and Edward Fadell  相似文献   

20.
In this paper, we first consider difference equations with several delays in the neutral term of the form * $$\Delta\left(y_{n}+\sum_{i=1}^{L}p_{i}y_{n-{k_{i}}}-\sum_{j=1}^{M}r_{j}y_{n-{\rho_{j}}}\right)+q_{n}y_{n-\tau}=0\quad \mbox{for}\ n\in\mathbb{Z}^{+}(0),$$ study various cases of coefficients in the neutral term and obtain the asymptotic behavior for non-oscillatory solution of (*) under some hypotheses. Moreover, we consider reaction-diffusion difference equations with several delays in the neutral term of the form $$\begin{array}{l}\Delta_{1}\left(u_{n,m}+\displaystyle \sum_{i=1}^{L}p_{i}u_{n-{k_{i}},m}-\displaystyle \sum_{j=1}^{M}r_{j}u_{n-{\rho_{j}},m}\right)+q_{n,m}u_{n-\tau,m}\\[18pt]\quad {}=a^{2}\Delta_{2}^{2}u_{n+1,m-1}\end{array}$$ for (n,m)∈?+(0)×Ω, study various cases of coefficients in the neutral term and obtain the asymptotic behavior for non-oscillatory solution under some hypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号