首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we discuss existence and uniqueness results for BSDEs driven by centered Gaussian processes. Compared to the existing literature on Gaussian BSDEs, which mainly treats fractional Brownian motion with Hurst parameter H>1/2H>1/2, our main contributions are: (i) Our results cover a wide class of Gaussian processes as driving processes including fractional Brownian motion with arbitrary Hurst parameter H∈(0,1)H(0,1); (ii) the assumptions on the generator ff are mild and include e.g. the case when ff has (super-)quadratic growth in zz; (iii) the proofs are based on transferring the problem to an auxiliary BSDE driven by a Brownian motion.  相似文献   

2.
We consider the linear stochastic wave equation with spatially homogeneous Gaussian noise, which is fractional in time with index H>1/2H>1/2. We show that the necessary and sufficient condition for the existence of the solution is a relaxation of the condition obtained in Dalang (1999) [10], where the noise is white in time. Under this condition, we show that the solution is L2(Ω)L2(Ω)-continuous. Similar results are obtained for the heat equation. Unlike in the white noise case, the necessary and sufficient condition for the existence of the solution in the case of the heat equation is different (and more general) than the one obtained for the wave equation.  相似文献   

3.
4.
The aim of this paper is to establish a change of variable formula for general Gaussian processes whose covariance function satisfies some technical conditions. The stochastic integral is defined in the Stratonovich sense using an approximation by middle point Riemann sums. The change of variable formula is proved by means of a Taylor expansion up to the sixth order, and applying the techniques of Malliavin calculus to show the convergence to zero of the residual terms. The conditions on the covariance function are weak enough to include processes with infinite quadratic variation, and we show that they are satisfied by the bifractional Brownian motion with parameters (H,K)(H,K) such that 1/6<HK<11/6<HK<1, and, in particular, by the fractional Brownian motion with Hurst parameter H∈(1/6,1)H(1/6,1).  相似文献   

5.
6.
7.
We derive a Molchan–Golosov-type integral transform which changes fractional Brownian motion of arbitrary Hurst index KK into fractional Brownian motion of index HH. Integration is carried out over [0,t][0,t], t>0t>0. The formula is derived in the time domain. Based on this transform, we construct a prelimit which converges in L2(P)L2(P)-sense to an analogous, already known Mandelbrot–Van Ness-type integral transform, where integration is over (−∞,t](,t], t>0t>0.  相似文献   

8.
9.
10.
11.
We introduce a broad class of self-similar processes {Z(t),t≥0}{Z(t),t0} called generalized Hermite processes. They have stationary increments, are defined on a Wiener chaos with Hurst index H∈(1/2,1)H(1/2,1), and include Hermite processes as a special case. They are defined through a homogeneous kernel gg, called the “generalized Hermite kernel”, which replaces the product of power functions in the definition of Hermite processes. The generalized Hermite kernels gg can also be used to generate long-range dependent stationary sequences forming a discrete chaos process {X(n)}{X(n)}. In addition, we consider a fractionally-filtered version Zβ(t)Zβ(t) of Z(t)Z(t), which allows H∈(0,1/2)H(0,1/2). Corresponding non-central limit theorems are established. We also give a multivariate limit theorem which mixes central and non-central limit theorems.  相似文献   

12.
Let X,X1,X2,…X,X1,X2, be independent and identically distributed RdRd-valued random vectors and assume XX belongs to the generalized domain of attraction of some operator semistable law without normal component. Then without changing its distribution, one can redefine the sequence on a new probability space such that the properly affine normalized partial sums converge in probability and consequently even in LpLp (for some p>0p>0) to the corresponding operator semistable Lévy motion.  相似文献   

13.
14.
We give functional limit theorems for the fluctuations of the rescaled occupation time process of a critical branching particle system in RdRd with symmetric αα-stable motion in the cases of critical and large dimensions, d=2αd=2α and d>2αd>2α. In a previous paper [T. Bojdecki, L.G. Gorostiza, A. Talarczyk, Limit theorems for occupation time fluctuations of branching systems I: long-range dependence, Stochastic Process. Appl., this issue.] we treated the case of intermediate dimensions, α<d<2αα<d<2α, which leads to a long-range dependence limit process. In contrast, in the present cases the limits are generalized Wiener processes. We use the same space–time random field method of the previous paper, the main difference being that now the tightness requires a new approach and the proofs are more difficult. We also give analogous results for the system without branching in the cases d=αd=α and d>αd>α.  相似文献   

15.
We study a discrete-time approximation for solutions of systems of decoupled Forward–Backward Stochastic Differential Equations (FBSDEs) with jumps. Assuming that the coefficients are Lipschitz-continuous, we prove the convergence of the scheme when the number of time steps nn goes to infinity. The rate of convergence is at least n−1/2+εn1/2+ε, for any ε>0ε>0. When the jump coefficient of the first variation process of the forward component satisfies a non-degeneracy condition which ensures its inversibility, we achieve the optimal convergence rate n−1/2n1/2. The proof is based on a generalization of a remarkable result on the path-regularity of the solution of the backward equation derived by Zhang [J. Zhang, A numerical scheme for BSDEs, Annals of Applied Probability 14 (1) (2004) 459–488] in the no-jump case.  相似文献   

16.
It is known that in the critical case the conditional least squares estimator (CLSE) of the offspring mean of a discrete time branching process with immigration is not asymptotically normal. If the offspring variance tends to zero, it is normal with normalization factor n2/3n2/3. We study a situation of its asymptotic normality in the case of non-degenerate offspring distribution for the process with time-dependent immigration, whose mean and variance vary regularly with non-negative exponents αα and ββ, respectively. We prove that if β<1+2αβ<1+2α, the CLSE is asymptotically normal with two different normalization factors and if β>1+2αβ>1+2α, its limit distribution is not normal but can be expressed in terms of the distribution of certain functionals of the time-changed Wiener process. When β=1+2αβ=1+2α the limit distribution depends on the behavior of the slowly varying parts of the mean and variance.  相似文献   

17.
We discuss joint temporal and contemporaneous aggregation of NN independent copies of AR(1) process with random-coefficient a∈[0,1)a[0,1) when NN and time scale nn increase at different rate. Assuming that aa has a density, regularly varying at a=1a=1 with exponent −1<β<11<β<1, different joint limits of normalized aggregated partial sums are shown to exist when N1/(1+β)/nN1/(1+β)/n tends to (i) ∞, (ii) 00, (iii) 0<μ<∞0<μ<. The limit process arising under (iii) admits a Poisson integral representation on (0,∞)×C(R)(0,)×C(R) and enjoys ‘intermediate’ properties between fractional Brownian motion limit in (i) and sub-Gaussian limit in (ii).  相似文献   

18.
We study the error induced by the time discretization of decoupled forward–backward stochastic differential equations (X,Y,Z)(X,Y,Z). The forward component XX is the solution of a Brownian stochastic differential equation and is approximated by a Euler scheme XNXN with NN time steps. The backward component is approximated by a backward scheme. Firstly, we prove that the errors (YN−Y,ZN−Z)(YNY,ZNZ) measured in the strong LpLp-sense (p≥1p1) are of order N−1/2N1/2 (this generalizes the results by Zhang [J. Zhang, A numerical scheme for BSDEs, The Annals of Applied Probability 14 (1) (2004) 459–488]). Secondly, an error expansion is derived: surprisingly, the first term is proportional to XN−XXNX while residual terms are of order N−1N1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号