首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
A digital watermark is a visible, or preferably invisible, identification code that is permanently embedded in digital media, to prove owner authentication and provide protection for documents. Given the interest in watermark generation using chaotic functions a detailed study of one chaotic function for this purpose is performed. In this paper, we present an approach for the generation of watermarks using the logistic map. Using this function, in conjunction with seed management, it is possible to generate chaotic sequences that may be used to create highpass or lowpass digital watermarks. In this paper we provide a detailed study on the generation of optically detectable watermarks and we provide some guidelines on successful chaotic watermark generation using the logistic map, and show using a recently published scheme, how care must be taken in the selection of the function seed.  相似文献   

2.
A digital watermark is a visible, or preferably invisible, identification code that is permanently embedded in digital media, to prove owner authentication and provide protection for documents. Given the interest in watermark generation using chaotic functions a detailed study of one chaotic function for this purpose is performed. In this paper, we present an approach for the generation of watermarks using the logistic map. Using this function, in conjunction with seed management, it is possible to generate chaotic sequences that may be used to create highpass or lowpass digital watermarks. In this paper we provide a detailed study on the generation of optically detectable watermarks and we provide some guidelines on successful chaotic watermark generation using the logistic map, and show using a recently published scheme, how care must be taken in the selection of the function seed.  相似文献   

3.
Fragile watermarking is a popular method for image authentication. In such schemes, a fragile signal that is sensitive to manipulations is embedded in the image, so that it becomes undetectable after any modification of the original work. Most algorithms focus either on the ability to retrieve the original work after watermark detection (invertibility) or on detecting which image parts have been altered (localization). Furthermore, the majority of fragile watermarking schemes suffer from robustness flaws. We propose a new technique that combines localization and invertibility. Moreover, watermark dependency on the original image and the non-linear watermark embedding procedure guarantees that no malicious attacks will manage to create information leaks.  相似文献   

4.
Digital watermarking has been widely used in digital rights management and copyright protection. In this paper, new cryptographic watermark schemes are proposed. Compare to the existing watermarking techniques, our proposed watermark schemes combine both security and efficiency that none of the existing schemes can do. We first develop an algorithm to randomly generate the watermark indices based on the discrete logarithm problem (DLP) and the Fermat’s little theorem. Then we embed watermark signal into the host image in both time domain and frequency domain at the indices. Our security analysis and simulation demonstrate that our proposed schemes can achieve excellent transparency and robustness under the major security attacks and common signal degradations. The novel approaches provided in this paper are ideal for general purpose commercial digital media copyright protection.  相似文献   

5.
From the unicity and orthogonality properties of chaotic sequences, it is demonstrated that a sum of N chaotic signals generated from a fixed class of chaotic systems is unique. Consequently, within a framework of a multi-user transmission, it is shown that synchronizing N chaotic carriers that emit simultaneously on the same frequency band is feasible. In this paper, the carriers are generated from Chua’s circuits and are modulated in amplitude by the information signal. Demodulation is ensured by the minimization of a cost function. Numerical simulations show that this synchronization method is robust in presence of noise and allows the integration of a high number of users.  相似文献   

6.
A perceptual pyramid watermarking method is proposed. The key idea is to use the contrast sensitivity of the human visual system (HVS) to determine “invisible” regions where watermark energy can be adjusted providing an invisible and robust watermark. These invisibles regions are obtained by computing a “visibility map” at each level of the Gaussian pyramid (GP). The watermark is weighted by the local contrast and a global scaling factor. The embedding process is performed by modifying the values in some levels of the Laplacian Pyramid (LP) using the spread spectrum technique. Afterwards, the watermarked image can be constructed from the levels of the LP. For watermark detection, a blind detection scheme using the threshold-correlation based technique is proposed. Finally, the performances of the watermarking method are evaluated in terms of invisibility and robustness using some quality metrics and different attacks of Stirmark such as Gaussian noise, low-pass filtering, Jpeg compression and cropping. This evaluation is performed for the choice of some parameters of the watermarking system depending on performances such as invisibility and robustness. The design of our watermarking technique can finally be formulated as an optimisation problem where the objective is to guarantee a trade-off between invisibility and robustness.  相似文献   

7.
Subdivision schemes provide the most efficient and effective way to design and render smooth spatial curves. It is well known that among the most popular schemes are the de Rham–Chaikin and Lane–Riesenfeld subdivision schemes, that can be readily formulated by direct applications of the two-scale (or refinement) sequences of the quadratic and cubic cardinal B-splines, respectively. In more recent works, semi-orthogonal and bi-orthogonal spline-wavelets have been integrated to curve subdivision schemes to add such powerful tools as automatic level-of-detail control algorithm for curve editing and rendering, and efficient simulation processing scheme for global graphic illumination and animation. The objective of this paper is to introduce and construct a family of spline-wavelets to overcome the limitations of semi-orthogonal and bi-orthogonal spline-wavelets for these and other applications, by adding flexibility to the enhancement of desirable characters without changing the sweep of the subdivision spline curve, by providing the shortest lowpass and highpass filter pairs without decreasing the discrete vanishing moments, and by assuring robust stability.  相似文献   

8.
With the increasing needs of global communication, the improvement of secure communication is of vital importance. This study proposes a new scheme for establishing secure communication systems. The new scheme separates white Gaussian noises from the chaotic signals with modified Independent Component Analysis (ICA) and then controls each chaotic signal. This scheme is able to deal with white Gaussian noises in the natural world. However, the signals separated by traditional ICA shows opposite phase and unequal amplitude, making chaos control impossible. Our study proposed a modified ICA, which can calculate accurately the phase and amplitude and ensure control of the chaotic systems. The result indicates that our proposed system can successfully separate white Gaussian noise and stabilize all the chaotic signals.  相似文献   

9.
Spread spectrum watermarking scheme is becoming an important research subject. In this paper, we present a method based on Peano–Hilbert space-filling curves for enhancing the robustness. Peano–Hilbert curve is a continuous mapping from one-dimensional space onto two-dimensional space. It is useful in many applications including quantum mechanics even, and preserves optimal locality. At the same time, we utilize a specified chaotic dynamic system–ICMIC map, which shows lowpass properties when the controlling parameter is devised. In this case, the watermarking detection resorts to the Neyman–Pearson criterion based on some statistical assumptions. Experimental results show that the proposed scheme can work well under JPEG compression and resist line-removal test.  相似文献   

10.
In the last two decades, a growing number of chaos-based cipher systems have been suggested for use in cryptographic applications. Most of these systems were subject to cryptanalytic attacks, and many of them were shown to suffer from a lack of security. In this paper, we export the self-shrinking technique used in classical cryptography into chaotic systems to develop chaotic keystream generators capable of generating keystreams featuring very good statistical properties, and possessing high level of security. This paper proposes a sample self-shrinking chaos-based keystream generator implemented using a 1-D chaotic tent map. Randomness properties and results of statistical testing of keystream bits generated by applying the self-shrinking technique on chaotic maps with suitable parameters are found encouraging. Furthermore, chaotic cipher systems based on such technique are demonstrated to have a better performance in terms of randomness properties and security level than many existing cipher systems.  相似文献   

11.
In this paper, we consider the generalized singular value decompositions for two tensors via the T-product. We investigate and discuss in detail the structures of the quotient singular value decomposition (T-QSVD) and product singular value decomposition (T-PSVD) for two tensors. The algorithms are presented with numerical examples illustrating the results. For applications, we consider color image watermarking processing with T-QSVD and T-PSVD. There are two advantages to T-QSVD and T-PSVD approaches on color watermark processing: two color watermarks can be processed simultaneously and only one key needs to be saved.  相似文献   

12.
Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.  相似文献   

13.
Recently, many scholars have proposed chaotic cryptosystems in order to promote communication security. However, there are a number of major problems detected in some of those schemes such as weakness against differential attack, slow performance speed, and unacceptable data expansion. In this paper, we introduce a new chaotic block cipher scheme for image cryptosystems that encrypts block of bits rather than block of pixels. It encrypts 256-bits of plainimage to 256-bits of cipherimage within eight 32-bit registers. The scheme employs the cryptographic primitive operations and a non-linear transformation function within encryption operation, and adopts round keys for encryption using a chaotic system. The new scheme is able to encrypt large size of images with superior performance speed than other schemes. The security analysis of the new scheme confirms a high security level and fairly uniform distribution.  相似文献   

14.
Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asynchronous dynamics (torus or torus–chaos) to different states of chaotic phase synchronization are found to significantly reduce the degree of multiscality. The influence of external noise on the possibility of distinguishing the various chaotic states is considered.  相似文献   

15.
In this paper, we introduce and study vector-valued multiresolution analysis with multiplicity r (VMRA) and m-band orthogonal vector-valued multiwavelets which have potential to form a convenient tool for analyzing vector-valued signals. Necessary conditions for orthonormality of vector-valued multiwavelets are presented in terms of filter banks. The existence of m-band vector-valued orthonormal multiwavelets is proved by means of bi-infinite matrix. The relationship between vector-valued multiwavelets and traditional multiwavelets are considered, and it is found that multiwavelets can be derived from row vector of vector-valued multiwavelets. The construction of vector-valued multiwavelets from several scalar-valued wavelets is proposed. Furthermore, we show how to construct vector-valued multiwavelets by using paraunitary multifilter bank, in particular, we give formulations of highpass filters when its corresponding lowpass filters satisfy certain conditions and m=2. An example is provided to illustrate this algorithm. At last, we present fast vector-valued multiwavelets transform in form of bi-infinite vector.  相似文献   

16.
Noise-induced chaos and basin erosion in softening Duffing oscillator   总被引:2,自引:0,他引:2  
It is common for many dynamical systems to have two or more attractors coexist and in such cases the basin boundary is fractal. The purpose of this paper is to study the noise-induced chaos and discuss the effect of noises on erosion of safe basin in the softening Duffing oscillator. The Melnikov approach is used to obtain the necessary condition for the rising of chaos, and the largest Lyapunov exponent is computed to identify the chaotic nature of the sample time series from the system. According to the Melnikov condition, the safe basins are simulated for both the deterministic and the stochastic cases of the system. It is shown that the external Gaussian white noise excitation is robust for inducing the chaos, while the external bounded noise is weak. Moreover, the erosion of the safe basin can be aggravated by both the Gaussian white and the bounded noise excitations, and fractal boundary can appear when the system is only excited by the random processes, which means noise-induced chaotic response is induced.  相似文献   

17.
The pseudo-randomness and complexity of binary sequences generated by chaotic systems are investigated in this paper. These chaotic binary sequences can have the same pseudo-randomness and complexity as the chaotic real sequences that are transformed into them by the use of Kohda’s quantification algorithm. The statistical test, correlation function, spectral analysis, Lempel–Ziv complexity and approximate entropy are regarded as quantitative measures to characterize the pseudo-randomness and complexity of these binary sequences. The experimental results show the finite binary sequences generated by the chaotic systems have good properties with the pseudo-randomness and complexity of sequences. However, the pseudo-randomness and complexity of sequence are not added with the increase of sequence length. On the contrary, they steadily decrease with the increase of sequence length in the criterion of approximate entropy and statistical test. The constraint of computational precision is a fundamental reason resulting in the problem. So only the shorter binary sequences generated by the chaotic systems are suitable for modern cryptography without other way of adding sequence complexity in the existing computer system.  相似文献   

18.
This paper proposes an extended substitution–diffusion based image cipher using chaotic standard map [1] and linear feedback shift register to overcome the weakness of previous technique by adding nonlinearity. The first stage consists of row and column rotation and permutation which is controlled by the pseudo-random sequences which is generated by standard chaotic map and linear feedback shift register, second stage further diffusion and confusion is obtained in the horizontal and vertical pixels by mixing the properties of the horizontally and vertically adjacent pixels, respectively, with the help of chaotic standard map. The number of rounds in both stage are controlled by combination of pseudo-random sequence and original image. The performance is evaluated from various types of analysis such as entropy analysis, difference analysis, statistical analysis, key sensitivity analysis, key space analysis and speed analysis. The experimental results illustrate that performance of this is highly secured and fast.  相似文献   

19.
A block encryption algorithm using dynamic sequences generated by multiple chaotic systems is proposed in this paper. In this algorithm, several one-dimension chaotic maps generate pseudo-random sequences, which are independent and approximately uniform. After a series of transformations, the sequences constitute a new pseudo-random sequence uniformly distributing in the value space, which covers the plaintext by executing Exclusive-OR and shifting operations some rounds to form the cipher. This algorithm makes the pseudo-random sequence possess more concealment and noise like characteristic, and overcomes the periodic malpractice caused by the computer precision and single chaotic system. Simulation results show that the algorithm is efficient and useable for the security of communication system.  相似文献   

20.
The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman–Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号