首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A central problem of branch-and-bound methods for global optimization is that often a lower bound do not match with the optimal value of the corresponding subproblem even if the diameter of the partition set shrinks to zero. This can lead to a large number of subdivisions preventing the method from terminating in reasonable time. For the all-quadratic optimization problem with convex constraints we present optimality cuts which cut off a given local minimizer from the feasible set. We propose a branch-and-bound algorithm using optimality cuts which is finite if all global minimizers fulfill a certain second order optimality condition. The optimality cuts are based on the formulation of a dual problem where additional redundant constraints are added. This technique is also used for constructing tight lower bounds. Moreover we present for the box-constrained and the standard quadratic programming problem dual bounds which have under certain conditions a zero duality gap.  相似文献   

2.
An implementable decomposition method based on branch-and-bound techniques is proposed for finding a global optimal solution of certain convex programs with an additional convex—concave constrainth(x, y) 0. A nonadaptive simplicial and an adaptive bisection are used for the branching operation, which is performed iny-space only. The bounding operation is based on a relaxation of the convex—concave constrainth(x, y) 0. The algorithm can be applied efficiently for linear programs with an additional affine multiplicative constraint.This work was partially supported by Alexander-von-Humboldt Foundation.  相似文献   

3.
The purpose of this article is to develop a branch-and-bound algorithm using duality bounds for the general quadratically-constrained quadratic programming problem and having the following properties: (i) duality bounds are computed by solving ordinary linear programs; (ii) they are at least as good as the lower bounds obtained by solving relaxed problems, in which each nonconvex function is replaced by its convex envelope; (iii) standard convergence properties of branch-and-bound algorithms for nonconvex global optimization problems are guaranteed. Numerical results of preliminary computational experiments for the case of one quadratic constraint are reported.  相似文献   

4.
Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem   总被引:7,自引:0,他引:7  
This article presents a branch-and-bound algorithm for globally solving the nonlinear sum of ratios problem (P). The algorithm economizes the required computations by conducting the branch-and-bound search in p, rather than in n, where p is the number of ratios in the objective function of problem (P) and n is the number of decision variables in problem (P). To implement the algorithm, the main computations involve solving a sequence of convex programming problems for which standard algorithms are available.  相似文献   

5.
6.
We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to be second-order cone representable. The usefulness of these new relaxations is demonstrated both theoretically and computationally.  相似文献   

7.
陈志平  郤峰 《计算数学》2004,26(4):445-458
针对现有分枝定界算法在求解高维复杂二次整数规划问题时所存在的诸多不足,本文通过充分挖掘二次整数规划问题的结构特性来设计选择分枝变量与分枝方向的新方法,并将HNF算法与原问题松弛问题的求解相结合来寻求较好的初始整数可行解,由此导出可用于有效求解中大规模复杂二次整数规划问题的改进型分枝定界算法.数值试验结果表明所给算法大大改进了已有相关的分枝定界算法,并具有较好的稳定性与广泛的适用性.  相似文献   

8.
We consider a recent branch-and-bound algorithm of the authors for nonconvex quadratic programming. The algorithm is characterized by its use of semidefinite relaxations within a finite branching scheme. In this paper, we specialize the algorithm to the box-constrained case and study its implementation, which is shown to be a state-of-the-art method for globally solving box-constrained nonconvex quadratic programs. S. Burer was supported in part by NSF Grants CCR-0203426 and CCF-0545514.  相似文献   

9.
On the basis of Soland's rectangular branch-and-bound, we develop an algorithm for minimizing a product of p (2) affine functions over a polytope. To tighten the lower bound on the value of each subproblem, we install a second-stage bounding procedure, which requires O(p) additional time in each iteration but remarkably reduces the number of branching operations. Computational results indicate that the algorithm is practical if p is less than 15, both in finding an exact optimal solution and an approximate solution.  相似文献   

10.
This paper is concerned with the development of an algorithm for general bilinear programming problems. Such problems find numerous applications in economics and game theory, location theory, nonlinear multi-commodity network flows, dynamic assignment and production, and various risk management problems. The proposed approach develops a new Reformulation-Linearization Technique (RLT) for this problem, and imbeds it within a provably convergent branch-and-bound algorithm. The method first reformulates the problem by constructing a set of nonnegative variable factors using the problem constraints, and suitably multiplies combinations of these factors with the original problem constraints to generate additional valid nonlinear constraints. The resulting nonlinear program is subsequently linearized by defining a new set of variables, one for each nonlinear term. This RLT process yields a linear programming problem whose optimal value provides a tight lower bound on the optimal value to the bilinear programming problem. Various implementation schemes and constraint generation procedures are investigated for the purpose of further tightening the resulting linearization. The lower bound thus produced theoretically dominates, and practically is far tighter, than that obtained by using convex envelopes over hyper-rectangles. In fact, for some special cases, this process is shown to yield an exact linear programming representation. For the associated branch-and-bound algorithm, various admissible branching schemes are discussed, including one in which branching is performed by partitioning the intervals for only one set of variables x or y, whichever are fewer in number. Computational experience is provided to demonstrate the viability of the algorithm. For a large number of test problems from the literature, the initial bounding linear program itself solves the underlying bilinear programming problem.This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), December 9–14, 1990.  相似文献   

11.
The purpose of this paper is threefold. First we propose splitting schemes for reformulating non-separable problems as block-separable problems. Second we show that the Lagrangian dual of a block-separable mixed-integer all-quadratic program (MIQQP) can be formulated as an eigenvalue optimization problem keeping the block-separable structure. Finally we report numerical results on solving the eigenvalue optimization problem by a proximal bundle algorithm applying Lagrangian decomposition. The results indicate that appropriate block-separable reformulations of MIQQPs could accelerate the running time of dual solution algorithms considerably.The work was supported by the German Research Foundation (DFG) under grant NO 421/2-1Mathematics Subject Classification (2000): 90C22, 90C20, 90C27, 90C26, 90C59  相似文献   

12.
This paper gives an O(n) algorithm for a singly constrained convex quadratic program using binary search to solve the Kuhn-Tucker system. Computational results indicate that a randomized version of this algorithm runs in expected linear time and is suitable for practical applications. For the nonconvex case an-approximate algorithm is proposed which is based on convex and piecewise linear approximations of the objective function.  相似文献   

13.
We present two linearization-based algorithms for mixed-integer nonlinear programs (MINLPs) having a convex continuous relaxation. The key feature of these algorithms is that, in contrast to most existing linearization-based algorithms for convex MINLPs, they do not require the continuous relaxation to be defined by convex nonlinear functions. For example, these algorithms can solve to global optimality MINLPs with constraints defined by quasiconvex functions. The first algorithm is a slightly modified version of the LP/NLP-based branch-and-bouund \((\text{ LP/NLP-BB })\) algorithm of Quesada and Grossmann, and is closely related to an algorithm recently proposed by Bonami et al. (Math Program 119:331–352, 2009). The second algorithm is a hybrid between this algorithm and nonlinear programming based branch-and-bound. Computational experiments indicate that the modified LP/NLP-BB method has comparable performance to LP/NLP-BB on instances defined by convex functions. Thus, this algorithm has the potential to solve a wider class of MINLP instances without sacrificing performance.  相似文献   

14.
We propose a method for finding a global optimal solution of programs with linear complementarity constraints. This problem arises for instance in bilevel programming. The main idea of the method is to generate a sequence of points either ending at a global optimal solution within a finite number of iterations or converging to a global optimal solution. The construction of such sequence is based on branch-and-bound techniques, which have been used successfully in global optimization. Results on a numerical test of the algorithm are reported.The main part of this article was written during the first authors stay as Visiting Professor at the Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba, Japan. The second and the third authors were supported by Grant-in-Aid for Scientific Research C(2) 13650061 of the Ministry of Education, Culture, Sports, Science, and\break Technology of Japan.The authors thank P. B. Hermanns, Department of Mathematics, University of Trier, for carrying out the numerical test reported in Section 5. The authors also thank the referees and the Associate Editor for comments and suggestions which helped improving the first version of this article.  相似文献   

15.
A branch-and-reduce approach to global optimization   总被引:4,自引:0,他引:4  
This paper presents valid inequalities and range contraction techniques that can be used to reduce the size of the search space of global optimization problems. To demonstrate the algorithmic usefulness of these techniques, we incorporate them within the branch-and-bound framework. This results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm components and theoretical properties are provided. Specialized algorithms for polynomial and multiplicative programs are developed. Extensive computational results are presented for engineering design problems, standard global optimization test problems, univariate polynomial programs, linear multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the problems solved, the computer implementation of the proposed algorithm provides very accurate solutions in modest computational time.  相似文献   

16.
In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. An algorithm, GOP, was presented for the solution of the problem through a series ofprimal andrelaxed dual problems that provide valid upper and lower bounds respectively on the global solution. The algorithm was proved to have finite convergence to an -global optimum. In this paper, new theoretical properties are presented that help to enhance the computational performance of the GOP algorithm applied to problems of special structure. The effect of the new properties is illustrated through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending problems from the literature. In addition, extensive computational experience is reported for randomly generated concave and indefinite quadratic programming problems of different sizes. The results show that the properties help to make the algorithm computationally efficient for fairly large problems.  相似文献   

17.
In this paper, we consider a general family of nonconvex programming problems. All of the objective functions of the problems in this family are identical, but their feasibility regions depend upon a parameter . This family of problems is called a parametric nonconvex program (PNP). Solving (PNP) means finding an optimal solution for every program in the family. A prototype branch-and-bound algorithm is presented for solving (PNP). By modifying a prototype algorithm for solving a single nonconvex program, this algorithm solves (PNP) in one branch-and-bound search. To implement the algorithm, certain compact partitions and underestimating functions must be formed in an appropriate manner. We present an algorithm for solving a particular (PNP) which implements the prototype algorithm by forming compact partitions and underestimating functions based upon rules given by Falk and Soland. The programs in this (PNP) have the same concave objective function, but their feasibility regions are described by linear constraints with differing right-hand sides. Computational experience with this algorithm is reported for various problems.The author would like to thank Professors R. M. Soland, T. L. Morin, and P. L. Yu for their helpful comments. Thanks also go to two anonymous reviewers for their useful comments concerning an earlier version of this paper.  相似文献   

18.
We introduce a very simple but efficient idea for branch and bound (&) algorithms in global optimization (GO). As input for our generic algorithm, we need an upper bound algorithm for the GO maximization problem and a branching rule. The latter reduces the problem into several smaller subproblems of the same type. The new & approach delivers one global optimizer or, if stopped before finished, improved upper and lower bounds for the problem. Its main difference to commonly used & techniques is its ability to approximate the problem from above and from below while traversing the problem tree. It needs no supplementary information about the system optimized and does not consume more time than classical & techniques. Experimental results with the maximum clique problem illustrate the benefit of this new method.  相似文献   

19.
In this paper, we develop a branch-and-bound algorithm for maximizing a sum of p (slant2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space, in which a concave polyhedral function overestimating the optimal value is constructed for the bounding operation. The branching operation is carried out in a p-dimensional space, in a way similar to the usual rectangular branch-and-bound method. We discuss the convergence properties and report some computational results.  相似文献   

20.
In this paper, we will develop an algorithm for solving a quadratic fractional programming problem which was recently introduced by Lo and MacKinlay to construct a maximal predictability portfolio, a new approach in portfolio analysis. The objective function of this problem is defined by the ratio of two convex quadratic functions, which is a typical global optimization problem with multiple local optima. We will show that a well-designed branch-and-bound algorithm using (i) Dinkelbach's parametric strategy, (ii) linear overestimating function and (iii) -subdivision strategy can solve problems of practical size in an efficient way. This algorithm is particularly efficient for Lo-MacKinlay's problem where the associated nonconvex quadratic programming problem has low rank nonconcave property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号