首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. Recently, the relationship between the competition number and the number of holes of a graph has been studied. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In this paper, we conjecture that the dimension of the hole space of a graph is not smaller than the competition number of the graph. We verify this conjecture for various kinds of graphs and show that our conjectured inequality is indeed an equality for connected triangle-free graphs.  相似文献   

2.
The notion of a competition graph was introduced by Cohen in 1968. The competition graph C(D) of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. In 1978, Roberts defined the competition number k(G) of a graph G as the minimum number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. In 1982, Opsut gave two lower bounds for the competition number of a graph. In this paper, we give a generalization of these two lower bounds for the competition number of a graph.  相似文献   

3.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graph G is defined to have vertices the arcs of G such that two arcs uv, xy are adjacent if and only if (v, u, x, y) is a 3-arc of G. We prove that any connected 3-arc graph is hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are hamiltonian. As a corollary we obtain that any vertex-transitive graph which is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three must be hamiltonian. This confirms the conjecture, for this family of vertex-transitive graphs, that all vertex-transitive graphs with finitely many exceptions are hamiltonian. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.  相似文献   

4.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y) of vertices such that both (v,u,x) and (u,x,y) are paths of length two. The 3-arc graph of a graph G is defined to have the arcs of G as vertices such that two arcs uv,xy are adjacent if and only if (v,u,x,y) is a 3-arc of G. In this paper, we study the independence, domination and chromatic numbers of 3-arc graphs and obtain sharp lower and upper bounds for them. We introduce a new notion of arc-coloring of a graph in studying vertex-colorings of 3-arc graphs.  相似文献   

5.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y) of vertices such that both (v,u,x) and (u,x,y) are paths of length two. The 3-arc graph of a given graph G, X(G), is defined to have vertices the arcs of G. Two arcs uv,xy are adjacent in X(G) if and only if (v,u,x,y) is a 3-arc of G. This notion was introduced in recent studies of arc-transitive graphs. In this paper we study diameter and connectivity of 3-arc graphs. In particular, we obtain sharp bounds for the diameter and connectivity of X(G) in terms of the corresponding invariant of G.  相似文献   

6.
7.
Given an acyclic digraph D, the competition graph C(D) is defined to be the undirected graph with V(D) as its vertex set and where vertices x and y are adjacent if there exists another vertex z such that the arcs (x,z) and (y,z) are both present in D. The competition number k(G) for an undirected graph G is the least number r such that there exists an acyclic digraph F on |V(G)|+r vertices where C(F) is G along with r isolated vertices. Kim and Roberts [The Elimination Procedure for the Competition Number, Ars Combin. 50 (1998) 97-113] introduced an elimination procedure for the competition number, and asked whether the procedure calculated the competition number for all graphs. We answer this question in the negative by demonstrating a graph where the elimination procedure does not calculate the competition number. This graph also provides a negative answer to a similar question about the related elimination procedure for the phylogeny number introduced by the current author in [S.G. Hartke, The Elimination Procedure for the Phylogeny Number, Ars Combin. 75 (2005) 297-311].  相似文献   

8.
Given a directed graph G=(V,A), the induced subgraph of G by a subset X of V is denoted by G[X]. A subset X of V is an interval of G provided that for a,bX and xV?X, (a,x)∈A if and only if (b,x)∈A, and similarly for (x,a) and (x,b). For instance, 0?, V and {x}, xV, are intervals of G, called trivial intervals. A directed graph is indecomposable if all its intervals are trivial, otherwise it is decomposable. Given an indecomposable directed graph G=(V,A), a vertex x of G is critical if G[V?{x}] is decomposable. An indecomposable directed graph is critical when all its vertices are critical. With each indecomposable directed graph G=(V,A) is associated its indecomposability directed graph defined on V by: given xyV, (x,y) is an arc of if G[V?{x,y}] is indecomposable. All the results follow from the study of the connected components of the indecomposability directed graph. First, we prove: if G is an indecomposable directed graph, which admits at least two non critical vertices, then there is xV such that G[V?{x}] is indecomposable and non critical. Second, we characterize the indecomposable directed graphs G which have a unique non critical vertex x and such that G[V?{x}] is critical. Third, we propose a new approach to characterize the critical directed graphs.  相似文献   

9.
For a poset P=(X,≤P), the double bound graph (DB-graph) of P is the graph DB(P)=(X,EDB(P)), where xyEDB(P) if and only if xy and there exist n,mX such that nPx,yPm. We obtain that for a subposet Q of a poset P,Q is an (n, m)-subposet of P if and only if DB(Q) is an induced subgraph DB(P). Using this result, we show some characterizations of split double bound graphs, threshold double bound graphs and difference double bound graphs in terms of (n, m)-subposets and double canonical posets.  相似文献   

10.
For a pair of vertices x and y in a graph G, we denote by dG(x,y) the distance between x and y in G. We call x a boundary vertex of y if x and y belong to the same component and dG(y,v)?dG(y,x) for each neighbor v of x in G. A boundary vertex of some vertex is simply called a boundary vertex, and the set of boundary vertices in G is called the boundary of G, and is denoted by B(G).In this paper, we investigate graphs with a small boundary. Since a pair of farthest vertices are boundary vertices, |B(G)|?2 for every connected graph G of order at least two. We characterize the graphs with boundary of order at most three. We cannot give a characterization of graphs with exactly four boundary vertices, but we prove that such graphs have minimum degree at most six. Finally, we give an upper bound to the minimum degree of a connected graph G in terms of |B(G)|.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号