首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of seasonality on the prey–predator model with predator-dependent trophic function is investigated analytically as well as numerically. The effect of periodic variations is considered on two different parameters of the system: the growth rate of prey and the death rate of the predators. The two parameters may not be in the same phase. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that seasonality in two different parameters with or without phase difference can give rise to multiple attractors, including chaos, with variations in critical parameters.  相似文献   

2.
A discrete three trophic level food chain model with ratio-dependent Michaelis-Menten type functional response is investigated. It is shown that under some appropriate conditions the system is permanent. The results indicate that, to make the species coexist in the long run, it is a surefire strategy to keep the death rate of the predator and top predator rather small and the intrinsic growth rate of the prey relatively large.  相似文献   

3.
This work provides a mathematical model for a predator‐prey system with general functional response and recruitment, which also includes capture on both species, and analyzes its qualitative dynamics. The model is formulated considering a population growth based on a general form of recruitment and predator functional response, as well as the capture on both prey and predators at a rate proportional to their populations. In this sense, it is proved that the dynamics and bifurcations are determined by a two‐dimensional threshold parameter. Finally, numerical simulations are performed using some ecological observations on two real species, which validate the theoretical results obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers permanence of a single-species dispersal periodic system with the possibility of the loss for the species during their dispersion among patches. The condition obtained for permanence generalizes the known condition on the system without loss for the species in the process of movement. Next, we add predators into every patch and consider the survival possibility of the predator. It is shown that the total amount of the predators can remain positive, if the single-species (prey) dispersal system has a positive periodic solution and the quantity of prey in each patch is enough for survival of the predator.  相似文献   

5.
In this work, a new pest management strategy by means of interval state monitoring is introduced into a prey–predator model, i.e. when the pest density exceeds the slightly harmful level but is below the damage level, the biological control is adopted in case of the predator density below a maintainable level, once the pest density exceeds the damage level, the chemical control is adopted. In order to determine the frequency of the chemical control and yield of releases of the predator, analysis on the existence of order-1 or order-2 periodic orbit is carried out by the construction of Poincaré map. The results could make the pest control strategy to be a periodic one without real-time monitoring the species. In addition, the stability and attractiveness of the periodic orbit are obtained by geometry approach, which ensures a certain robustness of control, i.e., even though the species densities are detected inaccurately or with a deviation, the system will be eventually stable at the periodic orbit under the control action. Furthermore, to obtain the optimum chemical control strength and yield releases of the predator, an optimization problem is constructed. The analytical results presented in the work are validated by numerical simulations for a specific model.  相似文献   

6.
In this paper, the Allee effect is incorporated into a predator–prey model with Holling type II functional response. Compared with the predator–prey model without Allee effect, we find that the Allee effect of prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes the Hopf bifurcation and heteroclinic bifurcation. The Allee effect of prey species can lead to unstable periodical oscillation. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.  相似文献   

7.
In this present article, we propose and analyze a cannibalistic predator–prey model with disease in the predator population. We consider two important factors for the dynamics of predator population. The first one is governed through cannibalistic interaction, and the second one is governed through the disease in the predator population via cannibalism. The local stability analysis of the model system around the biologically feasible equilibria are investigated. We perform global dynamics of the model using Lyapunov functions. We analyze and compare the community structure of the system in terms of ecological and disease basic reproduction numbers. The existence of Hopf bifurcation around the interior steady state is investigated. We also derive the sufficient conditions for the permanence and impermanence of the system. The study reveals that the cannibalism acts as a self-regulatory mechanism and controls the disease transmission among the predators by stabilizing the predator–prey oscillations.  相似文献   

8.
ABSTRACT. In this paper we develop a micro ecosystem model whose basic entities are representative organisms which behave as if maximizing their net offspring under constraints. Net offspring is increasing in prey biomass intake, declining in the loss of own biomass to predators and Allee's law applies. The organism's constraint reflects its perception of how scarce its own biomass and the biomass of its prey is. In the short‐run periods prices (scarcity indicators) coordinate and determine all biomass transactions and net offspring which directly translates into population growth functions. We are able to explicitly determine these growth functions for a simple food web when specific parametric net offspring functions are chosen in the micro‐level ecosystem model. For the case of a single species our model is shown to yield the well‐known Verhulst‐Pearl logistic growth function. With two species in predator‐prey relationship, we derive differential equations whose dynamics are completely characterized and turn out to be similar to the predator‐prey model with Michaelis‐Menten type functional response. With two species competing for a single resource we find that coexistence is a knife‐edge feature confirming Tschirhart's [2002] result in a different but related model.  相似文献   

9.
The paper is devoted to an optimal control problem for a system of three nonlinear parabolic equations from population dynamics. The equations model a trophic chain consisting of a predator, a pest and a plant species. The existence and uniqueness of the positive solution for the system are proved. The control variable is connected with the action of a pesticide. Our goal is to minimize the density of the pest and to maximize the plant density. The existence of the optimal solution is proved. The first and second order optimality conditions are established.  相似文献   

10.
We study a predator–prey model with two alien predators and one aborigine prey in which the net growth rates of both predators are negative. We characterize the invading speed of these two predators by the minimal wave speed of traveling wave solutions connecting the predator-free state to the co-existence state. The proof of the existence of traveling waves is based on a standard method by constructing (generalized) upper-lower-solutions with the help of Schauder’s fixed point theorem. However, in this three species model, we are able to construct some suitable pairs of upper-lower-solutions not only for the super-critical speeds but also for the critical speed. Moreover, a new form of shrinking rectangles is introduced to derive the right-hand tail limit of wave profile.  相似文献   

11.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
A tri‐trophic food chain model in a two‐patch environment is considered. Although tri‐trophic food chain model is well studied, the study considering migration of middle predator is lacking. To the best of our knowledge, the present investigation is the first study in this direction. Both prey and predator density‐dependent migrations are considered to observe the effects on stability and persistence of the system. We observe that migration of middle predator has the ability to control chaos in tri‐trophic food chain model. Our results indicate that the chance of predator extinction enhances for prey density‐dependent middle predator migration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In a natural ecosystem, specialist predators feed almost exclusively on one species of prey. But generalist predators feed on many types of species. Consequently, their dynamics is not coupled to the dynamics of a specific prey population. However, the defense of prey formed by congregating made the predator tend to move in the direction of lower concentration of prey species. This is described by cross-diffusion in a generalist predator–prey model. First, the positive equilibrium solution is globally asymptotically stable for the ODE system and for the reaction–diffusion system without cross-diffusion, respectively, hence it does not belong to the classical Turing instability scheme. But it becomes linearly unstable only when cross-diffusion also plays a role. This implies that cross–diffusion can lead to the occurrence and disappearance of the instability. Our results exhibit some interesting combining effects of cross-diffusion, predations and intra-species interactions. Furthermore, we consider the existence and non-existence results concerning non-constant positive steady states (patterns) of the system. We demonstrate that cross-diffusion can create non-constant positive steady-state solutions.  相似文献   

14.
A model for the effects of a predator on a genetically distinguished prey population is formulated and investigated. The predator-free system settles at an equilibrium which can be destabilized by the predators if a suitably defined parameter, the predator invasion number, exceeds a threshold. The system can then coexist at a stable equilibrium or via persistent oscillations.  相似文献   

15.
A multispecies harvesting model with mutual interactions is formulated based on Lotka–Voltera model with three competing species which are affected not only by harvesting but also by the presence of prey, predator and the third species, which is super predator. In order to understand the dynamics of the system, it is assumed that the super predator follows the logistic growth. Further, there is demand for all the above three species in the market and hence harvesting of all species is performed. We derive the condition for global stability of the system using a suitable Lyapunov function. The possibility of existence of bioeconomic equilibrium is discussed. The optimal harvest policy is studied and the solution is derived under imprecise inflation in fuzzy environment using Pontryagin’s maximal principle. Finally some numerical examples are discussed to illustrate the model.  相似文献   

16.
In this article, a three-species food chain model with intraspecific competition in top predators has been considered. Ecological and mathematical well posedness of the model system has been established by showing that all the solutions of the model are positive and bounded. The extinction scenarios of intermediate and top predator species along with the existence and stability of all equilibrium points have been discussed. The effects of competition and conversion efficiency of top predators in the dynamics of the system have been discussed with great thrust, and it is observed that the conversion efficiency of top predators deteriorates the stability of the system, whereas intraspecific competition in top predators enhances the stable coexistence of all the populations of the system. Further, nonautonomous version of the model system has been taken into consideration to study the impact of seasonal variation in the dynamics of the model system. Sufficient conditions for the existence of a globally attractive positive periodic have been established in a periodic environment. Finally, numerical simulations have been carried out to validate our analytical findings.  相似文献   

17.
具有扩散和比率依赖的三种群混合模型的分析   总被引:2,自引:0,他引:2  
本文讨论了捕食者具有比率依赖的功能性反应,食饵与另一种群竞争且自身可以 扩散的混合模型.证明了系统一致持久与扩散有关,而且得到了系统存在全局吸引周期 解的充分条件.  相似文献   

18.
Assuming that the prey refuge is proportional to the prey density if its population size is below a critical threshold, or constant if its size is above the threshold, this paper proposes, and qualitatively analyzes, a Leslie–Gower predator–prey model assuming alternative feeding and harvesting in predators, and a Holling II function as the predator functional response. From the results of the mathematical analysis to the predator–prey models with proportional or constant prey refuge, the proposed model retains the same bifurcation cases obtained for each model analyzed. However, appropriate alterations of the parameters representing the critical threshold of prey population size and harvest in predators allows the formation of at least one limit cycle, stable or unstable, that lives in both vector fields of the proposed model.  相似文献   

19.
We present a predator-prey model of Beddington-DeAngelis type functional response with stage structure on prey. The constant time delay is the time taken from birth to maturity about the prey. By the uniform persistence theories and monotone dynamic theories, sharp threshold conditions which are both necessary and sufficient for the permanence and extinction of the model as well as the sufficient conditions for the global stability of the coexistence equilibria are obtained. Biologically, it is proved that the variation of prey stage structure can affect the permanence of the system and drive the predator into extinction by changing the prey carrying capacity: Our results suggest that the predator coexists with prey permanently if and only if predator's recruitment rate at the peak of prey abundance is larger than its death rate; and that the predator goes extinct if and only if predator's possible highest recruitment rate is less than or equal to its death rate; furthermore, our results also show that a sufficiently large mutual interference by predators can stabilize the system.  相似文献   

20.
In this paper, a nonlinear nonautonomous predator–prey model with diffusion and continuous distributed delay is studied, where all the parameters are time-dependent. The system, which is composed of two patches, has two species: the prey can diffuse between two patches, but the predator is confined to one patch. We first discuss the uniform persistence and global asymptotic stability of the model; after that, by constructing a suitable Lyapunov functional, some sufficient conditions for the existence of a unique almost periodic solution of the system are obtained. An example shows the feasibility of our main results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号