首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, by means of a new efficient identification technique of active constraints and the method of strongly sub-feasible direction, we propose a new sequential system of linear equations (SSLE) algorithm for solving inequality constrained optimization problems, in which the initial point is arbitrary. At each iteration, we first yield the working set by a pivoting operation and a generalized projection; then, three or four reduced linear equations with a same coefficient are solved to obtain the search direction. After a finite number of iterations, the algorithm can produced a feasible iteration point, and it becomes the method of feasible directions. Moreover, after finitely many iterations, the working set becomes independent of the iterates and is essentially the same as the active set of the KKT point. Under some mild conditions, the proposed algorithm is proved to be globally, strongly and superlinearly convergent. Finally, some preliminary numerical experiments are reported to show that the algorithm is practicable and effective.  相似文献   

2.
Fractional advection‐dispersion equations are used in groundwater hydrologhy to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper we present two reliable algorithms, the Adomian decomposition method and variational iteration method, to construct numerical solutions of the space‐time fractional advection‐dispersion equation in the form of a rabidly convergent series with easily computable components. The fractional derivatives are described in the Caputo sense. Some examples are given. Numerical results show that the two approaches are easy to implement and accurate when applied to space‐time fractional advection‐dispersion equations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

3.
文章考虑了具有齐次边界条件的广义对称正则长波方程的有限差分格式.提出了一个守恒并且线性非耦合的三层有限差分格式,由于格式在计算中只需要解三对角线性方程组,从而避免了其中的迭代计算.文中先讨论了一个离散守恒量,然后我们利用离散泛函分析方法证明了格式的收敛性和稳定性,从理论上得到了收敛阶为O(h~2+τ~2).通过数值试验表明,所提的方法是可靠有效的.  相似文献   

4.
In this paper, a new projection method for solving a system of nonlinear equations with convex constraints is presented. Compared with the existing projection method for solving the problem, the projection region in this new algorithm is modified which makes an optimal stepsize available at each iteration and hence guarantees that the next iterate is more closer to the solution set. Under mild conditions, we show that the method is globally convergent, and if an error bound assumption holds in addition, it is shown to be superlinearly convergent. Preliminary numerical experiments also show that this method is more efficient and promising than the existing projection method. This work was done when Yiju Wang visited Chongqing Normal University.  相似文献   

5.
Under weak conditions, we present an iteration formula to improve Newton's method for solving nonlinear equations. The method is free from second derivatives, permitting f(x)=0 in some points and per iteration it requires two evaluations of the given function and one evaluation of its derivative. Analysis of convergence demonstrates that the new method is cubically convergent. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newton's method.  相似文献   

6.
In this paper we introduce a new preconditioner for linear systems of saddle point type arising from the numerical solution of the Navier-Stokes equations. Our approach is based on a dimensional splitting of the problem along the components of the velocity field, resulting in a convergent fixed-point iteration. The basic iteration is accelerated by a Krylov subspace method like restarted GMRES. The corresponding preconditioner requires at each iteration the solution of a set of discrete scalar elliptic equations, one for each component of the velocity field. Numerical experiments illustrating the convergence behavior for different finite element discretizations of Stokes and Oseen problems are included.  相似文献   

7.
In this study, we develop a four-parameter family of sixth order convergent iterative methods for solving nonlinear scalar equations. Methods of the family require evaluation of four functions per iteration. These methods are totally free of derivatives. Convergence analysis shows that the family is sixth order convergent, which is also verified through the numerical work. Though the methods are independent of derivatives, computational results demonstrate that family of methods are efficient and demonstrate equal or better performance as compared with other six order methods, and the classical Newton method.  相似文献   

8.
The two-dimensional modelling of shallow water flows over multi-sediment erodible beds is presented. A novel approach is developed for the treatment of multiple sediment types in morphodynamics. The governing equations include the two-dimensional shallow water equations for hydrodynamics, an Exner-type equation for morphodynamics, a two-dimensional transport equation for the suspended sediments, and a set of empirical equations for entrainment and deposition. Multilayer sedimentary beds are formed of different erodible soils with sediment properties and new exchange conditions between the bed layers are developed for the model. The coupled equations yield a hyperbolic system of balance laws with source terms. As a numerical solver for the system, we implement a fast finite volume characteristics method. The numerical fluxes are reconstructed using the method of characteristics which employs projection techniques. The proposed finite volume solver is simple to implement, satisfies the conservation property and can be used for two-dimensional sediment transport problems in non-homogeneous isotropic beds without need of complicated three-dimensional equations. To assess the performance of the proposed models, we present numerical results for a wide variety of shallow water flows over sedimentary layers. Comparisons to experimental data for dam-break problems over movable beds are also included in this study.  相似文献   

9.
The Chebyshev accelerated preconditioned modified Hermitian and skew‐Hermitian splitting (CAPMHSS) iteration method is presented for solving the linear systems of equations, which have two‐by‐two block coefficient matrices. We derive an iteration error bound to show that the new method is convergent as long as the eigenvalue bounds are not underestimated. Even when the spectral information is lacking, the CAPMHSS iteration method could be considered as an exponentially converging iterative scheme for certain choices of the method parameters. In this case, the convergence rate is independent of the parameters. Besides, the linear subsystems in each iteration can be solved inexactly, which leads to the inexact CAPMHSS iteration method. The iteration error bound of the inexact method is derived also. We discuss in detail the implementation of CAPMHSS for solving two models arising from the Galerkin finite‐element discretizations of distributed control problems and complex symmetric linear systems. The numerical results show the robustness and the efficiency of the new methods.  相似文献   

10.
严波  张汝清 《应用数学和力学》2000,21(12):1247-1254
采用基于混合物理论的多孔介质模型,给出粘性流体饱和两相多孔介质非线性动力问题的控制场方程以及相应边值和初值问题的提法,用Galerkin加权残值法导出罚有限元公式,并给出该非线性方程组的迭代求解方法。考虑了体积分数和渗透率与变形相关的情况。用编制的有限元程序计算分析了一维多孔柱体在脉冲载荷作用下的瞬态响应,数值结果表明文中方法正确有效。  相似文献   

11.
The motivation is driven by deposition processes based on chemical vapor problems. The underlying model problem is based on coupled transport–reaction equations with mobile and immobile areas. We deal with systems of ordinary and partial differential equations. Such equation systems are delicate to solve and we introduce a novel solver method, that takes into account ways to solve analytically parts of the transport and reaction equations. The main idea is to embed the analytical and semianalytical solutions, which can then be explicitly given to standard numerical schemes of higher order. The numerical scheme is based on flux‐based characteristic methods, which is a finite volume method. Such a method is an attractive alternative to the standard numerical schemes, which fully discretize the full equations. We instead reduce the computational time while embedding fast computable analytical parts. Here, we can accelerate the solver process, with a priori explicitly given solutions. We will focus on the derivation of the analytical solutions for general and special solutions of the characteristic methods that are embedded into a finite volume method. In the numerical examples, we illustrate the higher‐order method for different benchmark problems. Finally, the method is verified with realistic results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

12.
This work presents a radial basis collocation method combined with the quasi‐Newton iteration method for solving semilinear elliptic partial differential equations. The main result in this study is that there exists an exponential convergence rate in the radial basis collocation discretization and a superlinear convergence rate in the quasi‐Newton iteration of the nonlinear partial differential equations. In this work, the numerical error associated with the employed quadrature rule is considered. It is shown that the errors in Sobolev norms for linear elliptic partial differential equations using radial basis collocation method are bounded by the truncation error of the RBF. The combined errors due to radial basis approximation, quadrature rules, and quasi‐Newton and Newton iterations are also presented. This result can be extended to finite element or finite difference method combined with any iteration methods discussed in this work. The numerical example demonstrates a good agreement between numerical results and analytical predictions. The numerical results also show that although the convergence rate of order 1.62 of the quasi‐Newton iteration scheme is slightly slower than rate of order 2 in the Newton iteration scheme, the former is more stable and less sensitive to the initial guess. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

13.
In this article, we develop a branch of nonsingular solutions of a Picard multilevel stabilization of mixed finite volume method for the 2D/3D stationary Navier‐Stokes equations without relying on the unique solution condition. The method presented consists of capturing almost all information of initial problem (the nonlinear problems) on the coarsest mesh and then performs one Picard defect correction (the linear problems) on each subsequent mesh based on previous information thus only solving one large linear systems. What is more, the method presented can results in a better coefficient matrix in the model presented with small viscosity. Theoretical results show that the method presented is derived with the convergence rate of the same order as the corresponding finite volume method/finite element method solving the stationary Navier‐Stokes equations on a fine mesh. Therefore, the method presented is definitely more efficient than the standard finite volume method/finite element method. Finally, numerical experiments clearly show the efficiency of the method presented for solving the stationary Navier‐Stokes equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 30–50, 2018  相似文献   

14.
We study numerical methods for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. We first propose a new class of abstract monotone approximation schemes and get a convergence rate of 1/2 . Then, according to the abstract convergence results, by newly constructing monotone finite volume approximations on interior and boundary points, we obtain convergent finite volume schemes for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. Finally give some numerical results.  相似文献   

15.
李宏  孙萍  尚月强  罗振东 《计算数学》2012,34(4):413-424
本文利用有限体积元方法研究二维粘弹性方程, 给出一种时间二阶精度的全离散化有限体积元格式, 并给出这种全离散化有限体积元解的误差估计, 最后用数值例子验证数值结果与理论结果是相吻合的. 通过与有限元方法和有限差分方法相比较, 进一步说明了全离散化有限体积元格式是求解二维粘弹性方程数值解的最有效方法之一.  相似文献   

16.
Shamsul Qamar 《PAMM》2007,7(1):2040009-2040010
This article focuses on the modeling and simulation of population balance equations (PBEs) for simultaneous growth, nucleation and aggregation processes. Two numerical method are proposed for this purpose. The first method combines the method of characteristics (MOC) for growth process with a finite volume scheme (FVS) for aggregation process. The second method uses a high resolution finite volume scheme to solve the resulting PBEs. The numerical results show that both methods give accurate results. However, the first method is more efficient and accurate as compared to the second method. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Stefan Hartmann  Wolfgang Bier 《PAMM》2007,7(1):4060043-4060044
In this short communication the numerical treatment of a thermomechanical consistent finite strain viscoplasticity model for metal powder compaction is discussed. The convex single surface yield function evolves according to two evolution equations and remains convex under all loading conditions. The very challenging numerical treatment on local level for integrating the constitutive model requires particular globally convergent Newton-like method with inequality constraints so that a stable solution scheme results. This is embedded into a time-adaptive finite element program which makes use of diagonally-implicit Runge-Kutta methods combined with a Multilevel-Newton algorithm. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The paper deals with the numerical solution of a basic 2D model of the propagation of an ionization wave. The system of equations describing this propagation consists of a coupled set of reaction–diffusion-convection equations and a Poissons equation. The transport equations are solved by a finite volume method on an unstructured triangular adaptive grid. The upwind scheme and the diamond scheme are used for the discretization of the convection and diffusion fluxes, respectively. The Poisson equation is also discretized by the diamond scheme. Numerical results are presented. We deal in more detail with numerical tests of the grid adaptation technique and its influence on the numerical results. An original behavior is observed. The grid refinement is not sufficient to obtain accurate results for this particular phenomenon. Using a second order scheme for convection is necessary.  相似文献   

19.
This paper presents numerical solutions for the space‐ and time‐fractional Korteweg–de Vries equation (KdV for short) using the variational iteration method. The space‐ and time‐fractional derivatives are described in the Caputo sense. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via variational theory. The iteration method, which produces the solutions in terms of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and accurate when applied to space‐ and time‐fractional KdV equations. The method introduces a promising tool for solving many space–time fractional partial differential equations. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

20.
In this paper a two‐dimensional solute transport model is considered to simulate the leaching of copper ore tailing using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two diffusion–convection‐reaction equations with Neumann boundary conditions, and one ordinary differential equation. The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is used for the convection term and an P1‐FEM for the diffusion term. The convergence analysis is based on standard compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号