首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We show that the Dirichlet problem for the minimal hypersurface equation defined on arbitrary C 2 bounded domain Ω of an arbitrary complete Riemannian manifold M is solvable if the oscillation of the boundary data is bounded by a function \({\mathcal{C}}\) that is explicitely given and that depends only on the first and second derivatives of the boundary data as well as the second fundamental form of the boundary \({\partial\Omega}\) and the Ricci curvature of the ambient space M. This result extends Theorem 2 of Jenkins-Serrin (J Reine Angew Math 229:170–187,1968) about the solvability of the Dirichlet problem for the minimal hypersurface equation defined on bounded domains of the Euclidean space. We deduce that the Dirichlet problem for the minimal hypersurface equation is solvable for any continuous boundary data on a mean convex domain. We also show existence and uniqueness of the Dirichlet problem with boundary data at infinity—exterior Dirichlet problem—on Hadamard manifolds.  相似文献   

2.
For the Laplace equation in an unbounded domain (in the first quadrant, upper half-plane, plane with a cut), the Dirichlet and Neumann problems whose solutions are the imaginary and real parts of the complex function z 2lnz, respectively, are considered. Both problems are approximated on a square grid using the classic five-point difference scheme. The grid Fourier transform is applied to represent the solutions to the aforementioned grid problems in an integral form and obtain their asymptotic decompositions. It follows from the results that the accuracy of these grid solutions in the L h norm is O(h 2), where h is the grid step.  相似文献   

3.
The boundary value problem for the singularly perturbed reaction-diffusion parabolic equation in a ball in the case of spherical symmetry is considered. The derivatives with respect to the radial variable appearing in the equation are written in divergent form. The third kind boundary condition, which admits the Dirichlet and Neumann conditions, is specified on the boundary of the domain. The Laplace operator in the differential equation involves a perturbation parameter ?2, where ? takes arbitrary values in the half-open interval (0, 1]. When ? → 0, the solution of such a problem has a parabolic boundary layer in a neighborhood of the boundary. Using the integro-interpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge ?-uniformly at a rate of O(N ?2ln2 N + N 0 ?1 ), where N + 1 and N 0 + 1 are the numbers of the mesh points in the radial and time variables, respectively.  相似文献   

4.
The Dirichlet problem for a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle is considered. The higher order derivatives of the equations are multiplied by a perturbation parameter ?2, where ? takes arbitrary values in the interval (0, 1]. When ? vanishes, the system of parabolic equations degenerates into a system of ordinary differential equations with respect to t. When ? tends to zero, a parabolic boundary layer with a characteristic width ? appears in a neighborhood of the boundary. Using the condensing grid technique and the classical finite difference approximations of the boundary value problem, a special difference scheme is constructed that converges ?-uniformly at a rate of O(N ?2ln2 N + N 0 ?1 , where \(N = \mathop {\min }\limits_s N_s \), N s + 1 and N 0 + 1 are the numbers of mesh points on the axes x s and t, respectively.  相似文献   

5.
Let U be a bounded open subset of ?d, d ≥ 2 and fC(?U). The Dirichlet solution fCU of the Dirichlet problem associated with the Laplace equation with a boundary condition f is not continuous on the closure ū of U in general if U is not regular but it is always Baire-one.Let H(U) be the space of all functions continuous on the closure ū and harmonic on U and F(H(U)) be the space of uniformly bounded absolutely convergent series of functions in H(U). We prove that fCU can be obtained as a uniform limit of a sequence of functions in F(H(U)). Thus fCU belongs to the subclass B1/2 of Baire-one functions studied for example in [8]. This is not only an improvement of the result obtained in [10] but it also shows that the Dirichlet solution on the closure ū can share better properties than to be only a Baire-one function. Moreover, our proof is more elementary than that in [10].A generalization to the abstract context of simplicial function space on a metrizable compact space is provided.We conclude the paper with a brief discussion on the solvability of the abstract Dirichlet problem with a boundary condition belonging to the space of differences of bounded semicontinuous functions complementing the results obtained in [17].  相似文献   

6.
The Dirichlet problem for a singulary perturbed convection–diffusion equation in a rectangle when a discontinuity at the flow exit the first derivative of the boundary condition gives rise to an inner layer for the solution. On piecewise-uniform Shishkin grids that condense near regular and characteristic layers, the solution obtained using the classical five-point difference scheme with a directed difference is shown to converge with respect to the small parameter to solve the original problem in the grid norm L h almost with the first order. This theoretical result is confirmed via numerical analysis.  相似文献   

7.
In a rectangle, the Dirichlet problem for a system of two singularly perturbed elliptic reaction-diffusion equations is considered. The higher order derivatives of the ith equation are multiplied by the perturbation parameter ? i 2 (i = 1, 2). The parameters ?i take arbitrary values in the half-open interval (0, 1]. When the vector parameter ? = (?1, ?2) vanishes, the system of elliptic equations degenerates into a system of algebraic equations. When the components ?1 and (or) ?2 tend to zero, a double boundary layer with the characteristic width ?1 and ?2 appears in the vicinity of the boundary. Using the grid refinement technique and the classical finite difference approximations of the boundary value problem, special difference schemes that converge ?-uniformly at the rate of O(N ?2ln2 N) are constructed, where N = min N s, N s + 1 is the number of mesh points on the axis x s.  相似文献   

8.
A mixed boundary value problem for a singularly perturbed reaction-diffusion equation in a square is considered. A Neumann condition is specified on one side of the square, and a Dirichlet condition is set on the other three. It is assumed that the coefficient of the equation, its right-hand side, and the boundary values of the desired solution or its normal derivative on the sides of the square are smooth enough to ensure the required smoothness of the solution in a closed domain outside the neighborhoods of the corner points. No compatibility conditions are assumed to hold at the corner points. Under these assumptions, the desired solution in the entire closed domain is of limited smoothness: it belongs only to the Hölder class C μ, where μ ∈ (0, 1) is arbitrary. In the domain, a nonuniform rectangular mesh is introduced that is refined in the boundary domain and depends on a small parameter. The numerical solution to the problem is based on the classical five-point approximation of the equation and a four-point approximation of the Neumann boundary condition. A mesh refinement rule is described under which the approximate solution converges to the exact one uniformly with respect to the small parameter in the L h norm. The convergence rate is O(N ?2ln2 N), where N is the number of mesh nodes in each coordinate direction. The parameter-uniform convergence of difference schemes for mixed problems without compatibility conditions at corner points was not previously analyzed.  相似文献   

9.
In a bounded domain with smooth boundary in ?3 we consider the stationary Maxwell equations for a function u with values in ?3 subject to a nonhomogeneous condition (u, v)x = u0 on the boundary, where v is a given vector field and u0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.  相似文献   

10.
An initial–boundary value problem for a singularly perturbed transport equation with a perturbation parameter ε multiplying the spatial derivative is considered on the set ? = GS, where ? = D? × [0 ≤ tT], D? = {0 ≤ xd}, S = S l S, and S l and S0 are the lateral and lower boundaries. The parameter ε takes arbitrary values from the half-open interval (0,1]. In contrast to the well-known problem for the regular transport equation, for small values of ε, this problem involves a boundary layer of width O(ε) appearing in the neighborhood of S l ; in the layer, the solution of the problem varies by a finite value. For this singularly perturbed problem, the solution of a standard difference scheme on a uniform grid does not converge ε-uniformly in the maximum norm. Convergence occurs only if h=dN-1 ? ε and N0-1 ? 1, where N and N0 are the numbers of grid intervals in x and t, respectively, and h is the mesh size in x. The solution of the considered problem is decomposed into the sum of regular and singular components. With the behavior of the singular component taken into account, a special difference scheme is constructed on a Shishkin mesh, i.e., on a mesh that is piecewise uniform in x and uniform in t. On such a grid, a monotone difference scheme for the initial–boundary value problem for the singularly perturbed transport equation converges ε-uniformly in the maximum norm at an ?(N?1 + N0?1) rate.  相似文献   

11.
The Dirichlet problem for a singularly perturbed parabolic reaction-diffusion equation with a piecewise continuous initial condition in a rectangular domain is considered. The higher order derivative in the equation is multiplied by a parameter ?2, where ? ∈ (0, 1]. When ? is small, a boundary and an interior layer (with the characteristic width ?) appear, respectively, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the reduced equation passing through the discontinuity point of the initial function; for fixed ?, these layers have limited smoothness. Using the method of additive splitting of singularities (induced by the discontinuities of the initial function and its low-order derivatives) and the condensing grid method (piecewise uniform grids that condense in a neighborhood of the boundary layers), a finite difference scheme is constructed that converges ?-uniformly at a rate of O(N ?2ln2 N + n 0 ?1 ), where N + 1 and N 0 + 1 are the numbers of the mesh points in x and t, respectively. Based on the Richardson technique, a scheme that converges ?-uniformly at a rate of O(N ?3 + N 0 ?2 ) is constructed. It is proved that the Richardson technique cannot construct a scheme that converges in ?-uniformly in x with an order greater than three.  相似文献   

12.
We consider a locally one-dimensional scheme for an equation of parabolic type of the general form in a p-dimensional parallelepiped, obtain an a priori estimate for its solution, and prove that the solutions of this scheme converge to a solution of the equation at the rate O(|h|2 + τ), where |h|2 = h 1 2 + · · · + h p 2 and pα, α = 1,..., p, and τ are the steps in the space and time variables. We do not assume that the operator in the leading part of the equation is sign definite.  相似文献   

13.
14.
For strongly elliptic Systems with Douglis-Nirenberg structure, we investigate the regularity of variational solutions to the Dirichlet and Neumann problems in a bounded Lipschitz domain. The solutions of the problems with homogeneous boundary conditions are originally defined in the simplest L 2-Sobolev spaces H σ . The regularity results are obtained in the potential spaces H p σ and Besov spaces B p σ . In the case of second-order Systems, the author’s results obtained a year ago are strengthened. The Dirichlet problem with nonhomogeneous boundary conditions is considered with the use of Whitney arrays.  相似文献   

15.
The Dirichlet problem is considered for a singularly perturbed parabolic reaction-diffusion equation with piecewise continuous initial-boundary conditions in a rectangular domain. The highest derivative in the equation is multiplied by a parameter ? 2, ? ε (0, 1]. For small values of the parameter ?, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the limit equation passing through the point of discontinuity of the initial function, there arise a boundary layer and an interior layer (of characteristic width ?), respectively, which have bounded smoothness for fixed values of the parameter ?. Using the method of additive splitting of singularities (generated by discontinuities of the boundary function and its low-order derivatives), as well as the method of condensing grids (piecewise uniform grids condensing in a neighborhood of boundary layers), we construct and investigate special difference schemes that converge ?-uniformly with the second order of accuracy in x and the first order of accuracy in t, up to logarithmic factors.  相似文献   

16.
If the Poisson integral of the unit disc is replaced by its square root, it is known that normalized Poisson integrals of L p and weak L p boundary functions converge along approach regions wider than the ordinary nontangential cones, as proved by Rönning and the author, respectively. In this paper we characterize the approach regions for boundary functions in two general classes of Orlicz spaces. The first of these classes contains spaces L Φ having the property L ? L Φ L p , 1 ? p > ∞. The second contains spaces L Φ that resemble L p spaces.  相似文献   

17.
Let Ω be an open, simply connected, and bounded region in ? d , d?≥?2, and assume its boundary \(\partial\Omega\) is smooth. Consider solving an elliptic partial differential equation Lu?=?f over Ω with zero Dirichlet boundary values. The problem is converted to an equivalent elliptic problem over the unit ball B; and then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials u n of degree ≤?n that is convergent to u. The transformation from Ω to B requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For \(u\in C^{\infty}( \overline{\Omega})\) and assuming \(\partial\Omega\) is a C ?∞? boundary, the convergence of \(\left\Vert u-u_{n}\right\Vert _{H^{1}}\) to zero is faster than any power of 1/n. Numerical examples in ?2 and ?3 show experimentally an exponential rate of convergence.  相似文献   

18.
We present the convergence analysis of the rectangular Morley element scheme utilised on the second order problem in arbitrary dimensions. Specifically, we prove that the convergence of the scheme is of O(h) order in energy norm and of O(h2) order in L2 norm on general d-rectangular triangulations. Moreover, when the triangulation is uniform, the convergence rate can be of O(h2) order in energy norm, and the convergence rate in L2 norm is still of O(h2) order, which cannot be improved. Numerical examples are presented to demonstrate our theoretical results.  相似文献   

19.
Solutions of the planar Kepler problem with fixed energy h determine geodesics of the corresponding Jacobi–Maupertuis metric. This is a Riemannian metric on ?2 if h ? 0 or on a disk D ? ?2 if h < 0. The metric is singular at the origin (the collision singularity) and also on the boundary of the disk when h < 0. The Kepler problem and the corresponding metric are invariant under rotations of the plane and it is natural to wonder whether the metric can be realized as a surface of revolution in ?3 or some other simple space. In this note, we use elementary methods to study the geometry of the Kepler metric and the embedding problem. Embeddings of the metrics with h ? 0 as surfaces of revolution in ?3 are constructed explicitly but no such embedding exists for h < 0 due to a problem near the boundary of the disk. We prove a theorem showing that the same problem occurs for every analytic central force potential. Returning to the Kepler metric, we rule out embeddings in the three-sphere or hyperbolic space, but succeed in constructing an embedding in four-dimensional Minkowski spacetime. Indeed, there are many such embeddings.  相似文献   

20.
Generalized boundary conditions on multilayer films bounding a half-space and consisting of alternating infinitely thin strongly and weakly permeable layers are derived. The solution of the problem for the Laplace equation in a half-plane D bounded by a three-layer film is expressed in simple quadratures in terms of the solution of the classical Dirichlet problem in D without a film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号