首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The object of this paper is threefold. First, we investigate in a Hilbert space setting the utility of approximate source conditions in the method of Tikhonov–Phillips regularization for linear ill‐posed operator equations. We introduce distance functions measuring the violation of canonical source conditions and derive convergence rates for regularized solutions based on those functions. Moreover, such distance functions are verified for simple multiplication operators in L2(0, 1). The second aim of this paper is to emphasize that multiplication operators play some interesting role in inverse problem theory. In this context, we give examples of non‐linear inverse problems in natural sciences and stochastic finance that can be written as non‐linear operator equations in L2(0, 1), for which the forward operator is a composition of a linear integration operator and a non‐linear superposition operator. The Fréchet derivative of such a forward operator is a composition of a compact integration and a non‐compact multiplication operator. If the multiplier function defining the multiplication operator has zeros, then for the linearization an additional ill‐posedness factor arises. By considering the structure of canonical source conditions for the linearized problem it could be expected that different decay rates of multiplier functions near a zero, for example the decay as a power or as an exponential function, would lead to completely different ill‐posedness situations. As third we apply the results on approximate source conditions to such composite linear problems in L2(0, 1) and indicate that only integrals of multiplier functions and not the specific character of the decay of multiplier functions in a neighbourhood of a zero determine the convergence behaviour of regularized solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Many problems in image restoration can be formulated as either an unconstrained non‐linear minimization problem, usually with a Tikhonov‐like regularization, where the regularization parameter has to be determined; or as a fully constrained problem, where an estimate of the noise level, either the variance or the signal‐to‐noise ratio, is available. The formulations are mathematically equivalent. However, in practice, it is much easier to develop algorithms for the unconstrained problem, and not always obvious how to adapt such methods to solve the corresponding constrained problem. In this paper, we present a new method which can make use of any existing convergent method for the unconstrained problem to solve the constrained one. The new method is based on a Newton iteration applied to an extended system of non‐linear equations, which couples the constraint and the regularized problem, but it does not require knowledge of the Jacobian of the irregularity functional. The existing solver is only used as a black box solver, which for a fixed regularization parameter returns an improved solution to the unconstrained minimization problem given an initial guess. The new modular solver enables us to easily solve the constrained image restoration problem; the solver automatically identifies the regularization parameter, during the iterative solution process. We present some numerical results. The results indicate that even in the worst case the constrained solver requires only about twice as much work as the unconstrained one, and in some instances the constrained solver can be even faster. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we study the free boundary problem for degenerate parabolic equations (1.1)–(1.4). The existence of generalized solutions inBV 1, 1/2 is obtained by the means of parabolic regularization under certain restrictions. The uniqueness and regularity of generalized solutions are also discussed. In addition, a C1+ smoothness for the free boundary is obtained in the parabolic case.  相似文献   

4.
5.
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of the Moore-Penrose pseudoinverse of AA T as weighting matrix. Properties of this regularization method are discussed. Numerical examples illustrate that the proposed scheme for a suitable fractional power may give approximate solutions of higher quality than standard Tikhonov regularization.  相似文献   

6.
In this article, several cascading multilevel finite-element algorithms are considered to discretize nonlinear parabolic problems, of which the nonlinearity has either local or nonlocal form. Algorithm I solves only a stationary linear system of equations at each level of P1 finite element spaces, while Algorithm II works on the coupling of a stationary linear system of equations with a linear parabolic equation. The convergence orders of Algorithms I and II are both O(h J ) in the energy norm; in Algorithm I the estimation depends on the number of grids, while Algorithm II does not. Algorithm III is based on Picard linearization techniques and Algorithm IV on Newton iteration. Both algorithms have convergence order—O(h J ).  相似文献   

7.
Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1+|x| p ) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superlinear convex gradient nonlinearity. If the corresponding control problem has a bounded diffusion with respect to the control, then our results apply to a larger class of solutions, namely those growing like O(1+|x| p ) at infinity. This latter case encompasses some equations related to backward stochastic differential equations.  相似文献   

8.
In this paper, we reformulate the least-distance problems with bounded inequality constraints as an unconstrained convex minimization problem, which is equivalent to a system of piecewise linear equationsA(a+A T y) c d =b. The proposed Gauss-Seidel method for solving the problems is easy to implement and behaves very well when the number of rows ofA is much less than the number of columns ofA. Moreover, we prove that the Gauss-Seidel method has a linear convergence rate.The authors would like to thank Jinshui Qin who did some preliminary numerical testing for their research.  相似文献   

9.
We consider the Dirichlet problem for non‐divergence parabolic equation with discontinuous in t coefficients in a half space. The main result is weighted coercive estimates of solutions in anisotropic Sobolev spaces. We give an application of this result to linear and quasi‐linear parabolic equations in a bounded domain. In particular, if the boundary is of class C1,δ , δ ∈ [0, 1], then we present a coercive estimate of solutions in weighted anisotropic Sobolev spaces, where the weight is a power of the distance to the boundary (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We consider the homogenization of a time‐dependent heat transfer problem in a highly heterogeneous periodic medium made of two connected components having comparable heat capacities and conductivities, separated by a third material with thickness of the same order ε as the basic periodicity cell but having a much lower conductivity such that the resulting interstitial heat flow is scaled by a factor λ tending to zero with a rate λ=λ(ε). The heat flux vectors aj, j=1,2,3 are non‐linear, monotone functions of the temperature gradient. The heat capacities cj(x) are positive, but may vanish at some subsets such that the problem can be degenerate (parabolic–elliptic). We show that the critical value of the problem is δ=limε→0εp/λ and identify the homogenized problem depending on whether δ is zero, strictly positive finite or infinite. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an inverse problem for space‐fractional backward diffusion equation, which is highly ill‐posed, is considered. This problem is obtained from the classical diffusion equation by replacing the second‐order space derivative with a Riesz–Feller derivative of order α ∈ (0,2]. We show that such a problem is severely ill‐posed, and further present a simplified Tikhonov regularization method to deal with this problem. Convergence estimate is presented under a priori choice of regularization parameter. Numerical experiments are given to illustrate the accuracy and efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we develop a geometric theory for quasilinear parabolic problems in weighted L p -spaces. We prove existence and uniqueness of solutions as well as the continuous dependence on the initial data. Moreover, we make use of a regularization effect for quasilinear parabolic equations to study the ω-limit sets and the long-time behaviour of the solutions. These techniques are applied to a free boundary value problem. The results in this paper are mainly based on maximal regularity tools in (weighted) L p -spaces.  相似文献   

13.
This article is concerned with the computational aspect of ?1 regularization problems with a certain class of piecewise linear loss functions. The problem of computing the ?1 regularization path for a piecewise linear loss can be formalized as a parametric linear programming problem. We propose an efficient implementation method of the parametric simplex algorithm for such a problem. We also conduct a simulation study to investigate the behavior of the number of “breakpoints” of the regularization path when both the number of observations and the number of explanatory variables vary. Our method is also applicable to the computation of the regularization path for a piecewise linear loss and the blockwise ? penalty. This article has supplementary material online.  相似文献   

14.
15.
Motivated by the theoretical and practical results in compressed sensing, efforts have been undertaken by the inverse problems community to derive analogous results, for instance linear convergence rates, for Tikhonov regularization with ℓ1‐penalty term for the solution of ill‐posed equations. Conceptually, the main difference between these two fields is that regularization in general is an uncon strained optimization problem, while in compressed sensing a constrained one is used. Since the two methods have been developed in two different communities, the theoretical approaches to them appear to be rather different: In compressed sensing, the restricted isometry property seems to be central for proving linear convergence rates, whereas in regularization theory range or source conditions are imposed. The paper gives a common meaning to the seemingly different conditions and puts them into perspective with the conditions from the respective other community. A particularly important observation is that the range condition together with an injectivity condition is weaker than the restricted isometry property. Under the weaker conditions, linear convergence rates can be proven for compressed sensing and for Tikhonov regularization. Thus existing results from the literature can be improved based on a unified analysis. In particular, the range condition is shown to be the weakest possible condition that permits the derivation of linear convergence rates for Tikhonov regularization with a priori parameter choice. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
The paper presents a damped and perturbed Newton-type method for solving linear complementarity problems with positive-semidefinite matricesM. In particular, the following properties hold: all occurring subproblems are linear equations; each subproblem is uniquely solvable without any assumption; every accumulation point generated by the method solves the linear complementarity problem. The additional property ofM to be an R0-matrix is sufficient, but not necessary, for the boundedness of the iterates. Provided thatM is positive definite on a certain subspace, the method converges Q-quadratically.The author would like to thank the anonymous referees and Dr. K. Schönefeld for their valuable comments and suggestions. He is also grateful to Prof. Dr. J. W. Schmidt for his continuous interest in this study.  相似文献   

17.
Although the residual method, or constrained regularization, is frequently used in applications, a detailed study of its properties is still missing. This sharply contrasts the progress of the theory of Tikhonov regularization, where a series of new results for regularization in Banach spaces has been published in the recent years. The present paper intends to bridge the gap between the existing theories as far as possible. We develop a stability and convergence theory for the residual method in general topological spaces. In addition, we prove convergence rates in terms of (generalized) Bregman distances, which can also be applied to non-convex regularization functionals.We provide three examples that show the applicability of our theory. The first example is the regularized solution of linear operator equations on Lp-spaces, where we show that the results of Tikhonov regularization generalize unchanged to the residual method. As a second example, we consider the problem of density estimation from a finite number of sampling points, using the Wasserstein distance as a fidelity term and an entropy measure as regularization term. It is shown that the densities obtained in this way depend continuously on the location of the sampled points and that the underlying density can be recovered as the number of sampling points tends to infinity. Finally, we apply our theory to compressed sensing. Here, we show the well-posedness of the method and derive convergence rates both for convex and non-convex regularization under rather weak conditions.  相似文献   

18.
In this paper we generalize global Lp‐type gradient estimates to Orlicz spaces for weak solutions of the parabolic equations with small BMO coefficients in Reifenberg flat domains (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, we study the initial-boundary value problem for a class of singular parabolic equations. Under some conditions, we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regularization method and the sub-super solutions method. As a byproduct, we prove the existence of solutions to some problems with gradient terms, which blow up on the boundary.  相似文献   

20.
The perturbation method is used in the dual regularization theory for a linear convex optimal control problem with a strongly convex objective functional and pointwise state constraints understood as ones in L 2. Primary attention is given to the qualitative properties of the dual regularization method, depending on the differential properties of the value function (S-function) in the optimization problem. It is shown that the convergence of the method is closely related to the Lagrange principle and the Pontryagin maximum principle. The dual regularization scheme is shown to provide a new method for proving the maximum principle in the problem with pointwise state constraints understood in L 2 or C. The regularized Lagrange principle in nondifferential form and the regularized Pontryagin maximum principle are discussed. Illustrative examples are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号