首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the empirical likelihood for constructing a confidence region of the parameter of interest in a multi-link semiparametric model when an infinite-dimensional nuisance parameter exists. The new model covers the commonly used varying coefficient, generalized linear, single-index, multi-index, hazard regression models and their generalizations, as its special cases. Because of the existence of the infinite-dimensional nuisance parameter, the classical empirical likelihood with plug-in estimation cannot be asymptotically distribution-free, and the existing bias correction is not extendable to handle such a general model. We then propose a link-based correction approach to solve this problem. This approach gives a general rule of bias correction via an inner link, and consists of two parts. For the model whose estimating equation contains the score functions that are easy to estimate, we use a centering for the scores to correct the bias; for the model of which the score functions are of complex structure, a bias-correction procedure using simpler functions instead of the scores is given without loss of asymptotic efficiency. The resulting empirical likelihood shares the desired features: it has a chi-square limit and, under-smoothing technique, high order kernel and parameter estimation are not needed. Simulation studies are carried out to examine the performance of the new method.  相似文献   

2.
In this article we study a semiparametric generalized partially linear model when the covariates are missing at random. We propose combining local linear regression with the local quasilikelihood technique and weighted estimating equation to estimate the parameters and nonparameters when the missing probability is known or unknown. We establish normality of the estimators of the parameter and asymptotic expansion for the estimators of the nonparametric part. We apply the proposed models and methods to a study of the relation between virologic and immunologic responses in AIDS clinical trials, in which virologic response is classified into binary variables. We also give simulation results to illustrate our approach.  相似文献   

3.
Local likelihood estimation for nonstationary random fields   总被引:3,自引:0,他引:3  
We develop a weighted local likelihood estimate for the parameters that govern the local spatial dependency of a locally stationary random field. The advantage of this local likelihood estimate is that it smoothly downweights the influence of faraway observations, works for irregular sampling locations, and when designed appropriately, can trade bias and variance for reducing estimation error. This paper starts with an exposition of our technique on the problem of estimating an unknown positive function when multiplied by a stationary random field. This example gives concrete evidence of the benefits of our local likelihood as compared to unweighted local likelihoods. We then discuss the difficult problem of estimating a bandwidth parameter that controls the amount of influence from distant observations. Finally we present a simulation experiment for estimating the local smoothness of a local Matérn random field when observing the field at random sampling locations in [0,1]2. The local Matérn is a fully nonstationary random field, has a closed form covariance, can attain any degree of differentiability or Hölder smoothness and behaves locally like a stationary Matérn. We include an appendix that proves the positive definiteness of this covariance function.  相似文献   

4.
Two-sample point prediction is considered for a two-parameter exponential distribution. Several point predictors such as the best unbiased predictor, best invariant predictor and maximum likelihood predictor are obtained for future order statistics on the basis of observed record values in two cases: where the location parameter is known and unknown. These predictors are compared in the sense of their mean squared prediction errors. Finally, some numerical results are given to illustrate the proposed procedures.  相似文献   

5.
An alternative to the accelerated failure time model is to regress the median of the failure time on the covariates. In the recent years, censored median regression models have been shown to be useful for analyzing a variety of censored survival data with the robustness property. Based on missing information principle, a semiparametric inference procedure for regression parameter has been developed when censoring variable depends on continuous covariate. In order to improve the low coverage accuracy of such procedure, we apply an empirical likelihood ratio method (EL) to the model and derive the limiting distributions of the estimated and adjusted empirical likelihood ratios for the vector of regression parameter. Two kinds of EL confidence regions for the unknown vector of regression parameters are obtained accordingly. We conduct an extensive simulation study to compare the performance of the proposed methods with that normal approximation based method. The simulation results suggest that the EL methods outperform the normal approximation based method in terms of coverage probability. Finally, we make some discussions about our methods.  相似文献   

6.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated.  相似文献   

7.
The purpose of this paper is two-fold. First, for the estimation or inference about the parameters of interest in semiparametric models, the commonly used plug-in estimation for infinite-dimensional nuisance parameter creates non-negligible bias, and the least favorable curve or under-smoothing is popularly employed for bias reduction in the literature. To avoid such strong structure assumptions on the models and inconvenience of estimation implementation, for the diverging number of parameters in a varying coefficient partially linear model, we adopt a bias-corrected empirical likelihood (BCEL) in this paper. This method results in the distribution of the empirical likelihood ratio to be asymptotically tractable. It can then be directly applied to construct confidence region for the parameters of interest. Second, different from all existing methods that impose strong conditions to ensure consistency of estimation when diverging the number of the parameters goes to infinity as the sample size goes to infinity, we provide techniques to show that, other than the usual regularity conditions, the consistency holds under moment conditions alone on the covariates and error with a diverging rate being even faster than those in the literature. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least squares method. A real dataset is analyzed for illustration.  相似文献   

8.
Consider the model Y=m(X)+ε, where m(⋅)=med(Y|⋅) is unknown but smooth. It is often assumed that ε and X are independent. However, in practice this assumption is violated in many cases. In this paper we propose modeling the dependence between ε and X by means of a copula model, i.e. (ε,X)∼Cθ(Fε(⋅),FX(⋅)), where Cθ is a copula function depending on an unknown parameter θ, and Fε and FX are the marginals of ε and X. Since many parametric copula families contain the independent copula as a special case, the so-obtained regression model is more flexible than the ‘classical’ regression model.We estimate the parameter θ via a pseudo-likelihood method and prove the asymptotic normality of the estimator, based on delicate empirical process theory. We also study the estimation of the conditional distribution of Y given X. The procedure is illustrated by means of a simulation study, and the method is applied to data on food expenditures in households.  相似文献   

9.
An important model in handling the multivariate data is the partially linear single-index regression model with a very flexible distribution—beta distribution, which is commonly used to model data restricted to some open intervals on the line. In this paper, the score test is extended to the partially linear single-index beta regression model. The penalized likelihood estimation based on P-spline is proposed. Based on the estimation, the score test statistics about varying dispersion parameter is given. Its asymptotical property is investigated. Both simulated examples are used to illustrate our proposed methods.  相似文献   

10.
A bias-corrected technique for constructing the empirical likelihood ratio is used to study a semiparametric regression model with missing response data. We are interested in inference for the regression coefficients, the baseline function and the response mean. A class of empirical likelihood ratio functions for the parameters of interest is defined so that undersmoothing for estimating the baseline function is avoided. The existing data-driven algorithm is also valid for selecting an optimal bandwidth. Our approach is to directly calibrate the empirical log-likelihood ratio so that the resulting ratio is asymptotically chi-squared. Also, a class of estimators for the parameters of interest is constructed, their asymptotic distributions are obtained, and consistent estimators of asymptotic bias and variance are provided. Our results can be used to construct confidence intervals and bands for the parameters of interest. A simulation study is undertaken to compare the empirical likelihood with the normal approximation-based method in terms of coverage accuracies and average lengths of confidence intervals. An example for an AIDS clinical trial data set is used for illustrating our methods.  相似文献   

11.
We consider one-step estimation of parameters that represent the strength of spatial dependence in a geostatistical or lattice spatial model. While the maximum likelihood estimators (MLE) of spatial dependence parameters are known to have various desirable properties, they do not have closed-form expressions. Therefore, we consider a one-step alternative to maximum likelihood estimation based on solving an approximate (i.e., one-step) profile likelihood estimating equation. The resulting approximate profile likelihood estimator (APLE) has a closed-form representation, making it a suitable alternative to the widely used Moran’s I statistic. Since the finite-sample and asymptotic properties of one-step estimators of covariance-function parameters have not been studied rigorously, we explore these properties for the APLE of the spatial dependence parameter in the simultaneous autoregressive (SAR) model. Motivated by the APLE statistic’s closed from, we develop exploratory spatial data analysis tools that capture regions of local clustering or the extent to which the strength of spatial dependence varies across space. We illustrate these exploratory tools using both simulated data and observed crime rates in Columbus, OH.  相似文献   

12.
In this paper, we are concerned with statistical inference for the index parameter in the single-index model . Based on the estimates obtained by the local linear method, we extend the generalized likelihood ratio test to the single-index model. We investigate the asymptotic behaviour of the proposed test and demonstrate that its limiting null distribution follows a χ2-distribution, with the scale constant and the number of degrees of freedom being independent of nuisance parameters or functions, which is called the Wilks phenomenon. A simulated example is used to illustrate the performance of the testing approach.  相似文献   

13.
For nonnegative measurements such as income or sick days, zero counts often have special status. Furthermore, the incidence of zero counts is often greater than expected for the Poisson model. This article considers a doubly semiparametric zero-inflated Poisson model to fit data of this type, which assumes two partially linear link functions in both the mean of the Poisson component and the probability of zero. We study a sieve maximum likelihood estimator for both the regression parameters and the nonparametric functions. We show, under routine conditions, that the estimators are strongly consistent. Moreover, the parameter estimators are asymptotically normal and first order efficient, while the nonparametric components achieve the optimal convergence rates. Simulation studies suggest that the extra flexibility inherent from the doubly semiparametric model is gained with little loss in statistical efficiency. We also illustrate our approach with a dataset from a public health study.  相似文献   

14.
In the problem of selecting the explanatory variables in the linear mixed model, we address the derivation of the (unconditional or marginal) Akaike information criterion (AIC) and the conditional AIC (cAIC). The covariance matrices of the random effects and the error terms include unknown parameters like variance components, and the selection procedures proposed in the literature are limited to the cases where the parameters are known or partly unknown. In this paper, AIC and cAIC are extended to the situation where the parameters are completely unknown and they are estimated by the general consistent estimators including the maximum likelihood (ML), the restricted maximum likelihood (REML) and other unbiased estimators. We derive, related to AIC and cAIC, the marginal and the conditional prediction error criteria which select superior models in light of minimizing the prediction errors relative to quadratic loss functions. Finally, numerical performances of the proposed selection procedures are investigated through simulation studies.  相似文献   

15.
We discuss the estimation of the tail index of a heavy-tailed distribution when covariate information is available. The approach followed here is based on the technique of local polynomial maximum likelihood estimation. The generalized Pareto distribution is fitted locally to exceedances over a high specified threshold. The method provides nonparametric estimates of the parameter functions and their derivatives up to the degree of the chosen polynomial. Consistency and asymptotic normality of the proposed estimators will be proven under suitable regularity conditions. This approach is motivated by the fact that in some applications the threshold should be allowed to change with the covariates due to significant effects on scale and location of the conditional distributions. Using the asymptotic results we are able to derive an expression for the asymptotic mean squared error, which can be used to guide the selection of the bandwidth and the threshold. The applicability of the method will be demonstrated with a few practical examples.  相似文献   

16.
We study the asymptotic performance of approximate maximum likelihood estimators for state space models obtained via sequential Monte Carlo methods. The state space of the latent Markov chain and the parameter space are assumed to be compact. The approximate estimates are computed by, firstly, running possibly dependent particle filters on a fixed grid in the parameter space, yielding a pointwise approximation of the log-likelihood function. Secondly, extensions of this approximation to the whole parameter space are formed by means of piecewise constant functions or B-spline interpolation, and approximate maximum likelihood estimates are obtained through maximization of the resulting functions. In this setting we formulate criteria for how to increase the number of particles and the resolution of the grid in order to produce estimates that are consistent and asymptotically normal.  相似文献   

17.
We estimate the drift parameter in a simple linear model driven by fractional Brownian motion. We propose maximum likelihood estimators (MLE) for the drift parameter construct by using a random walk approximation of the fractional Brownian motion.  相似文献   

18.
This article proposes the efficient empirical-likelihood-based inferences for the single component of the parameter and the link function in the single-index model. Unlike the existing empirical likelihood procedures for the single-index model, the proposed profile empirical likelihood for the parameter is constructed by using some components of the maximum empirical likelihood estimator (MELE) based on a semiparametric efficient score. The empirical-likelihood-based inference for the link function is also considered. The resulting statistics are proved to follow a standard chi-squared limiting distribution. Simulation studies are undertaken to assess the finite sample performance of the proposed confidence intervals. An application to real data set is illustrated.  相似文献   

19.
The empirical likelihood method is especially useful for constructing confidence intervals or regions of parameters of interest. Yet, the technique cannot be directly applied to partially linear single-index models for longitudinal data due to the within-subject correlation. In this paper, a bias-corrected block empirical likelihood (BCBEL) method is suggested to study the models by accounting for the within-subject correlation. BCBEL shares some desired features: unlike any normal approximation based method for confidence region, the estimation of parameters with the iterative algorithm is avoided and a consistent estimator of the asymptotic covariance matrix is not needed. Because of bias correction, the BCBEL ratio is asymptotically chi-squared, and hence it can be directly used to construct confidence regions of the parameters without any extra Monte Carlo approximation that is needed when bias correction is not applied. The proposed method can naturally be applied to deal with pure single-index models and partially linear models for longitudinal data. Some simulation studies are carried out and an example in epidemiology is given for illustration.  相似文献   

20.
We consider the likelihood ratio tests (LRT) for two continuous monotone hazards with an unknown change point. We establish the convergence in distribution and weak convergence of LRT. Simulation studies show that the proposed tests compare favorably to other existing tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号