首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
变量选择是统计建模中重要的问题。当试验数据维数很高时,传统变量选择方法的应用受到了很多制约。本文以高维混料试验为基础,比较了AIC准则和LASSO在变量选择问题上的优良性。通过实例验证,LASSO可以快速且准确地对高维混料模型中的变量进行筛选,从而得出最优模型,达到降低成本、提高利益的目的。  相似文献   

2.
主要研究因变量存在缺失且协变量部分包含测量误差情形下,如何对变系数部分线性模型同时进行参数估计和变量选择.我们利用插补方法来处理缺失数据,并结合修正的profile最小二乘估计和SCAD惩罚对参数进行估计和变量选择.并且证明所得的估计具有渐近正态性和Oracle性质.通过数值模拟进一步研究所得估计的有限样本性质.  相似文献   

3.
与传统的的媒体营销模式相比,搜索引擎广告因其精准和投入低等特点获得巨大成功。但已有的搜索引擎广告点击率模型不能有效解决数据量大及特征维度高的问题,使预测结果的准确性大打折扣。本文构建了一种基于LASSO变量选择方法的广告点击率预测模型,能有效克服现有广告点击率模型在处理数据高维性和稀疏性方面的不足。利用某公司的竞价数据对模型进行验证,结果表明影响广告点击率的关键因素是广告关键词中的商标信息、地域信息和每点击成本。该研究结果为企业制定搜索引擎广告营销策略提供一定的理论依据。  相似文献   

4.
为避免模型出现过拟合,将自适应LASSO变量选择方法引入二元选择分位回归模型,利用贝叶斯方法构建Gibbs抽样算法并在抽样中设置不影响预测结果的约束条件‖β‖=1以提高抽样值的稳定性.通过数值模拟,表明改进的模型有更为良好的参数估计效率、变量选择功能和分类能力.  相似文献   

5.
频率模型平均估计近年来受到了较大的关注,但对有测量误差的观测数据尚未见到任何研究.文章主要考虑了线性测量误差模型的平均估计问题,导出了模型平均估计的渐近分布,基于Hjort和Claeskens(2003)的思想构造了一个覆盖真实参数的概率趋于预定水平的置信区间,并证明了该置信区间与基于全模型正态逼近所构造的置信区间的渐近等价性.模拟结果表明当协变量存在测量误差时,模型平均估计能明显增加点估计的效率.  相似文献   

6.
7.
生长曲线模型是一个典型的多元线性模型,在现代统计学上占有重要地位. 文章首先基于Potthoff-Roy变换后的生长曲线模型,采用自适应LASSO为惩罚函数给出了参数矩阵的惩罚最小二乘估计,实现了变量的选择. 其次, 基于局部渐近二次估计,对生长曲线模型的惩罚最小二乘估计给出了统一的近似估计表达式. 接着,讨论了经过Potthoff-Roy变换后模型的惩罚最小二乘估计,证明了自适应LASSO具有Oracle性质. 最后对几种变量选择方法进行了数据模拟.结果表明自适应LASSO效果比较好. 另外, 综合考虑,Potthoff-Roy变换优于拉直变换.  相似文献   

8.
考虑高维部分线性模型,提出了同时进行变量选择和估计兴趣参数的变量选择方法.将Dantzig变量选择应用到线性部分及非参数部分的各阶导数,从而获得参数和非参数部分的估计,且参数部分的估计具有稀疏性,证明了估计的非渐近理论界.最后,模拟研究了有限样本的性质.  相似文献   

9.
本文研究了协变量随机缺失下部分线性模型的模型选择和模型平均问题.首先利用逆概率加权方法得出了线性回归系数和非参数函数的估计,并在局部误设定框架下证明了线性回归系数估计量的渐近正态性.然后构造了兴趣参数的兴趣信息准则和频数模型平均估计量,并根据该模型平均估计量构造了一个覆盖真实参数的概率趋于预定水平的置信区间.模拟研究和...  相似文献   

10.
张君 《应用概率统计》2012,28(3):319-330
本文考虑了部分线性模型中,线性部分协变量含有测量误差,并且线性部分的参数随着样本量的增大而发散的估计问题.我们考虑了用可观测的替代变量来替代不可观察到的真实变量,这种替代变量的期望与真实变量存在线性关系.我们提出了估计方法,并研究了估计量的相合性与渐进正态性.此外,我们研究了发散参数的发散速度.我们通过模拟来说明该估计的实际效果.  相似文献   

11.
部分线性单指标模型的复合分位数回归及变量选择   总被引:1,自引:0,他引:1       下载免费PDF全文
本文提出复合最小化平均分位数损失估计方法 (composite minimizing average check loss estimation,CMACLE)用于实现部分线性单指标模型(partial linear single-index models,PLSIM)的复合分位数回归(composite quantile regression,CQR).首先基于高维核函数构造参数部分的复合分位数回归意义下的相合估计,在此相合估计的基础上,通过采用指标核函数进一步得到参数和非参数函数的可达最优收敛速度的估计,并建立所得估计的渐近正态性,比较PLSIM的CQR估计和最小平均方差估计(MAVE)的相对渐近效率.进一步地,本文提出CQR框架下PLSIM的变量选择方法,证明所提变量选择方法的oracle性质.随机模拟和实例分析验证了所提方法在有限样本时的表现,证实了所提方法的优良性.  相似文献   

12.
In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose an empirical likelihood based variable selection procedure, and show that it is consistent and satisfies the sparsity. The simulation studies show that the proposed variable selection method is workable.  相似文献   

13.
The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the GJS estimator and Kernel estimation.  相似文献   

14.
In this paper, we focus our attention on the precise asymptotics of error variance estimator in partially linear regression models, y i = x i τ β + g(t i ) + ε i , 1 ≤ in, {ε i , i = 1, ⋯ n} are i.i.d random errors with mean 0 and positive finite variance σ 2. Following the ideas of Allan Gut and Aurel Spătaru[7,8] and Zhang[21], on precise asymptotics in the Baum-Katz and Davis laws of large numbers and precise rate in laws of the iterated logarithm, respectively, and subject to some regular conditions, we obtain the corresponding results in partially linear regression models.   相似文献   

15.
本文在多种复杂数据下, 研究一类半参数变系数部分线性模型的统计推断理论和方法. 首先在纵向数据和测量误差数据等复杂数据下, 研究半参数变系数部分线性模型的经验似然推断问题, 分别提出分组的和纠偏的经验似然方法. 该方法可以有效地处理纵向数据的组内相关性给构造经验似然比函数所带来的困难. 其次在测量误差数据和缺失数据等复杂数据下, 研究模型的变量选择问题, 分别提出一个“纠偏” 的和基于借补值的变量选择方法. 该变量选择方法可以同时选择参数分量及非参数分量中的重要变量, 并且变量选择与回归系数的估计同时进行. 通过选择适当的惩罚参数, 证明该变量选择方法可以相合地识别出真实模型, 并且所得的正则估计具有oracle 性质.  相似文献   

16.
本文提出稳健Lq(0q∞)正则化模型,证明该模型解的全局渐近分布定理.应用该定理可进一步证明当0q1时所提出的模型具有变量选择一致性,从而具有良好的变量选择能力.基于所获得的理论结果,提出一类求解该模型的无参量加权迭代算法,并给出相应的正则化参数选择策略.数值试验表明本文提出的模型与算法可行、有效,有广泛的应用价值.  相似文献   

17.
This article considers the use of adaptive ridge classification rules for classifying an observation as coming from one of two multivariate normal distributionsN(μ(1)Σ) andN(μ(2)Σ). In particular, the asymptotic expected error rates for a general class of these rules are obtained and are compared with that of the usual linear discriminant rule.  相似文献   

18.
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号