首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The problem of Hybrid Linear Modeling (HLM) is to model and segment data using a mixture of affine subspaces. Different strategies have been proposed to solve this problem, however, rigorous analysis justifying their performance is missing. This paper suggests the Theoretical Spectral Curvature Clustering (TSCC) algorithm for solving the HLM problem and provides careful analysis to justify it. The TSCC algorithm is practically a combination of Govindu’s multi-way spectral clustering framework (CVPR 2005) and Ng et al.’s spectral clustering algorithm (NIPS 2001). The main result of this paper states that if the given data is sampled from a mixture of distributions concentrated around affine subspaces, then with high sampling probability the TSCC algorithm segments well the different underlying clusters. The goodness of clustering depends on the within-cluster errors, the between-clusters interaction, and a tuning parameter applied by TSCC. The proof also provides new insights for the analysis of Ng et al. (NIPS 2001). This work was supported by NSF grant #0612608.  相似文献   

2.
Clustering algorithms divide up a dataset into a set of classes/clusters, where similar data objects are assigned to the same cluster. When the boundary between clusters is ill defined, which yields situations where the same data object belongs to more than one class, the notion of fuzzy clustering becomes relevant. In this course, each datum belongs to a given class with some membership grade, between 0 and 1. The most prominent fuzzy clustering algorithm is the fuzzy c-means introduced by Bezdek (Pattern recognition with fuzzy objective function algorithms, 1981), a fuzzification of the k-means or ISODATA algorithm. On the other hand, several research issues have been raised regarding both the objective function to be minimized and the optimization constraints, which help to identify proper cluster shape (Jain et al., ACM Computing Survey 31(3):264–323, 1999). This paper addresses the issue of clustering by evaluating the distance of fuzzy sets in a feature space. Especially, the fuzzy clustering optimization problem is reformulated when the distance is rather given in terms of divergence distance, which builds a bridge to the notion of probabilistic distance. This leads to a modified fuzzy clustering, which implicitly involves the variance–covariance of input terms. The solution of the underlying optimization problem in terms of optimal solution is determined while the existence and uniqueness of the solution are demonstrated. The performances of the algorithm are assessed through two numerical applications. The former involves clustering of Gaussian membership functions and the latter tackles the well-known Iris dataset. Comparisons with standard fuzzy c-means (FCM) are evaluated and discussed.  相似文献   

3.
This paper presents a modification of one variant of Karmarkar's interior-point linear programming algorithm to Multiobjective Linear Programming (MOLP) problems. We show that by taking the variant known as the affine-scaling primal algorithm, generating locally-relevant scaling coefficients and applying them to the projected gradients produced by it, we can define what we refer to as anchoring points that then define cones in which we search for an optimal solution through interaction with the decision maker. Currently existing MOLP algorithms are simplex-based and make their progress toward the optimal solution by following the vertices of the constraints polytope. Since the proposed algorithm makes its progress through the interior of the constraints polytope, there is no need for vertex information and, therefore, the search for an optimal solution may prove less sensitive to problem size. We refer to the class of MOLP algorithms resulting from this variant as Affine-Scaling Interior Multiobjective Linear Programming (ASIMOLP) algorithms.  相似文献   

4.
在给定的度量空间中, 单位聚类问题就是寻找最少的单位球来覆盖给定的所有点。这是一个众所周知的组合优化问题, 其在线版本为: 给定一个度量空间, 其中的n个点会一个接一个的到达任何可能的位置, 在点到达的时候必须给该点分配一个单位聚类, 而此时未来点的相关信息都是未知的, 问题的目标是最后使用的单位聚类数目最少。本文考虑的是带如下假设的一类一维在线单位聚类问题: 在相应离线问题的最优解中任意两个相邻聚类之间的距离都大于0.5。本文首先给出了两个在线算法和一些引理, 接着通过0.5的概率分别运行两个在线算法得到一个组合随机算法, 最后证明了这个组合随机算法的期望竞争比不超过1.5。  相似文献   

5.
在给定的度量空间中, 单位聚类问题就是寻找最少的单位球来覆盖给定的所有点。这是一个众所周知的组合优化问题, 其在线版本为: 给定一个度量空间, 其中的n个点会一个接一个的到达任何可能的位置, 在点到达的时候必须给该点分配一个单位聚类, 而此时未来点的相关信息都是未知的, 问题的目标是最后使用的单位聚类数目最少。本文考虑的是带如下假设的一类一维在线单位聚类问题: 在相应离线问题的最优解中任意两个相邻聚类之间的距离都大于0.5。本文首先给出了两个在线算法和一些引理, 接着通过0.5的概率分别运行两个在线算法得到一个组合随机算法, 最后证明了这个组合随机算法的期望竞争比不超过1.5。  相似文献   

6.
SPT: a stochastic tunneling algorithm for global optimization   总被引:1,自引:0,他引:1  
A stochastic approach to solving unconstrained continuous-function global optimization problems is presented. It builds on the tunneling approach to deterministic optimization presented by Barhen and co-workers (Bahren and Protopopescu, in: State of the Art in Global Optimization, Kluwer, 1996; Barhen et al., Floudas and Pardalos (eds.), TRUST: a deterministic algorithm for global optimization, 1997) by combining a series of local descents with stochastic searches. The method uses a rejection-based stochastic procedure to locate new local minima descent regions and a fixed Lipschitz-like constant to reject unpromising regions in the search space, thereby increasing the efficiency of the tunneling process. The algorithm is easily implemented in low-dimensional problems and scales easily to large problems. It is less effective without further heuristics in these latter cases, however. Several improvements to the basic algorithm which make use of approximate estimates of the algorithms parameters for implementation in high-dimensional problems are also discussed. Benchmark results are presented, which show that the algorithm is competitive with the best previously reported global optimization techniques. A successful application of the approach to a large-scale seismology problem of substantial computational complexity using a low-dimensional approximation scheme is also reported.  相似文献   

7.
There exist many data clustering algorithms, but they can not adequately handle the number of clusters or cluster shapes. Their performance mainly depends on a choice of algorithm parameters. Our approach to data clustering and algorithm does not require the parameter choice; it can be treated as a natural adaptation to the existing structure of distances between data points. The outlier factor introduced by the author specifies a degree of being an outlier for each data point. The outlier factor notion is based on the difference between the frequency distribution of interpoint distances in a given dataset and the corresponding distribution of uniformly distributed points. Then data clusters can be determined by maximizing the outlier factor function. The data points in dataset are divided into clusters according to the attractor regions of local optima. An experimental evaluation of the proposed algorithm shows that the proposed method can identify complex cluster shapes. Key advantages of the approach are: good clustering properties for datasets with comparatively large amount of noise (an additional data points), and an absence of important parameters which adequate choice determines the quality of results.  相似文献   

8.
Non-additive measures are a valuable tool to model many different problems arising in real situations. However, two important difficulties appear in their practical use: the complexity of the measures and their identification from sample data. For the first problem, additional conditions are imposed, leading to different subfamilies of non-additive measures. Related to the second point, in this paper we study the set of vertices of some families of non-additive measures, namely k-additive measures and p-symmetric measures. These extreme points are necessary in order to properly apply a new method of identification of non-additive measures based on genetic algorithms, whose cross-over operator is the convex combination. We solve the problem through techniques of Linear Programming.  相似文献   

9.
Cluster analysis has been widely used to explore thousands of gene expressions from microarray analysis and identify a small number of similar genes (objects) for further detailed biological investigation. However, most clustering algorithms tend to identify loose clusters with too many genes. In this paper, we propose a Bayesian tight clustering method for time course gene expression data, which selects a small number of closely-related genes and constructs tight clusters only with these closely-related genes.  相似文献   

10.
Clustering is an important problem in data mining. It can be formulated as a nonsmooth, nonconvex optimization problem. For the most global optimization techniques this problem is challenging even in medium size data sets. In this paper, we propose an approach that allows one to apply local methods of smooth optimization to solve the clustering problems. We apply an incremental approach to generate starting points for cluster centers which enables us to deal with nonconvexity of the problem. The hyperbolic smoothing technique is applied to handle nonsmoothness of the clustering problems and to make it possible application of smooth optimization algorithms to solve them. Results of numerical experiments with eleven real-world data sets and the comparison with state-of-the-art incremental clustering algorithms demonstrate that the smooth optimization algorithms in combination with the incremental approach are powerful alternative to existing clustering algorithms.  相似文献   

11.
There are many data clustering techniques available to extract meaningful information from real world data, but the obtained clustering results of the available techniques, running time for the performance of clustering techniques in clustering real world data are highly important. This work is strongly felt that fuzzy clustering technique is suitable one to find meaningful information and appropriate groups into real world datasets. In fuzzy clustering the objective function controls the groups or clusters and computation parts of clustering. Hence researchers in fuzzy clustering algorithm aim is to minimize the objective function that usually has number of computation parts, like calculation of cluster prototypes, degree of membership for objects, computation part for updating and stopping algorithms. This paper introduces some new effective fuzzy objective functions with effective fuzzy parameters that can help to minimize the running time and to obtain strong meaningful information or clusters into the real world datasets. Further this paper tries to introduce new way for predicting membership, centres by minimizing the proposed new fuzzy objective functions. And experimental results of proposed algorithms are given to illustrate the effectiveness of proposed methods.  相似文献   

12.
This article proposes a new quantity for assessing the number of groups or clusters in a dataset. The key idea is to view clustering as a supervised classification problem, in which we must also estimate the “true” class labels. The resulting “prediction strength” measure assesses how many groups can be predicted from the data, and how well. In the process, we develop novel notions of bias and variance for unlabeled data. Prediction strength performs well in simulation studies, and we apply it to clusters of breast cancer samples from a DNA microarray study. Finally, some consistency properties of the method are established.  相似文献   

13.
In this paper, we investigate the problem of determining the number of clusters in the k-modes based categorical data clustering process. We propose a new categorical data clustering algorithm with automatic selection of k. The new algorithm extends the k-modes clustering algorithm by introducing a penalty term to the objective function to make more clusters compete for objects. In the new objective function, we employ a regularization parameter to control the number of clusters in a clustering process. Instead of finding k directly, we choose a suitable value of regularization parameter such that the corresponding clustering result is the most stable one among all the generated clustering results. Experimental results on synthetic data sets and the real data sets are used to demonstrate the effectiveness of the proposed algorithm.  相似文献   

14.
Given a set of moving points in d, we show how to cluster them in advance, using a small number of clusters, so that at any time this static clustering is competitive with the optimal k-center clustering at that time. The advantage of this approach is that it avoids updating the clustering as time passes. We also show how to maintain this static clustering efficiently under insertions and deletions. To implement this static clustering efficiently, we describe a simple technique for speeding up clustering algorithms and apply it to achieve faster clustering algorithms for several problems. In particular, we present a linear time algorithm for computing a 2-approximation to the k-center clustering of a set of n points in d. This slightly improves the algorithm of Feder and Greene, that runs in (n log k) time (which is optimal in the algebraic decision tree model).  相似文献   

15.
Optimal solutions of Linear Programming problems may become severely infeasible if the nominal data is slightly perturbed. We demonstrate this phenomenon by studying 90 LPs from the well-known NETLIB collection. We then apply the Robust Optimization methodology (Ben-Tal and Nemirovski [1–3]; El Ghaoui et al. [5, 6]) to produce “robust” solutions of the above LPs which are in a sense immuned against uncertainty. Surprisingly, for the NETLIB problems these robust solutions nearly lose nothing in optimality. Received: July 1999 / Accepted: May 2000?Published online July 20, 2000  相似文献   

16.
We present a preprocessing algorithm to make certain polynomial time algorithms strongly polynomial time. The running time of some of the known combinatorial optimization algorithms depends on the size of the objective functionw. Our preprocessing algorithm replacesw by an integral valued-w whose size is polynomially bounded in the size of the combinatorial structure and which yields the same set of optimal solutions asw. As applications we show how existing polynomial time algorithms for finding the maximum weight clique in a perfect graph and for the minimum cost submodular flow problem can be made strongly polynomial. Further we apply the preprocessing technique to make H. W. Lenstra’s and R. Kannan’s Integer Linear Programming algorithms run in polynomial space. This also reduces the number of arithmetic operations used. The method relies on simultaneous Diophantine approximation. This research was done while the authors were visiting the Institute for Operations Research, University of Bonn, West Germany (1984–85), and while the second author was visiting MSRI, Berkeley. Her research was supported in part by NSF Grant 8120790.  相似文献   

17.
Given a set of entities associated with points in Euclidean space, minimum sum-of-squares clustering (MSSC) consists in partitioning this set into clusters such that the sum of squared distances from each point to the centroid of its cluster is minimized. A column generation algorithm for MSSC was given by du Merle et?al. in SIAM Journal Scientific Computing 21:1485–1505. The bottleneck of that algorithm is the resolution of the auxiliary problem of finding a column with negative reduced cost. We propose a new way to solve this auxiliary problem based on geometric arguments. This greatly improves the efficiency of the whole algorithm and leads to exact solution of instances with over 2,300 entities, i.e., more than 10 times as much as previously done.  相似文献   

18.
《Fuzzy Sets and Systems》2004,141(2):301-317
This paper presents fuzzy clustering algorithms for mixed features of symbolic and fuzzy data. El-Sonbaty and Ismail proposed fuzzy c-means (FCM) clustering for symbolic data and Hathaway et al. proposed FCM for fuzzy data. In this paper we give a modified dissimilarity measure for symbolic and fuzzy data and then give FCM clustering algorithms for these mixed data types. Numerical examples and comparisons are also given. Numerical examples illustrate that the modified dissimilarity gives better results. Finally, the proposed clustering algorithm is applied to real data with mixed feature variables of symbolic and fuzzy data.  相似文献   

19.
Clustering is a popular data analysis and data mining technique. Since clustering problem have NP-complete nature, the larger the size of the problem, the harder to find the optimal solution and furthermore, the longer to reach a reasonable results. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent the clusters well. A large area of research in clustering has focused on improving the clustering process such that the clusters are not dependent on the initial identification of cluster representation. Another problem about clustering is local minimum problem. Although studies like K-Harmonic means clustering solves the initialization problem trapping to the local minima is still a problem of clustering. In this paper we develop a new algorithm for solving this problem based on a tabu search technique—Tabu K-Harmonic means (TabuKHM). The experiment results on the Iris and the other well known data, illustrate the robustness of the TabuKHM clustering algorithm.  相似文献   

20.
Data clustering, also called unsupervised learning, is a fundamental issue in data mining that is used to understand and mine the structure of an untagged assemblage of data into separate groups based on their similarity. Recent studies have shown that clustering techniques that optimize a single objective may not provide satisfactory result because no single validity measure works well on different kinds of data sets. Moreover, the performance of clustering algorithms degrades with more and more overlaps among clusters in a data set. These facts have motivated us to develop a fuzzy multi-objective particle swarm optimization framework in an innovative fashion for data clustering, termed as FMOPSO, which is able to deliver more effective results than state-of-the-art clustering algorithms. The key challenge in designing FMOPSO framework for data clustering is how to resolve cluster assignments confusion with such points in the data set which have significant belongingness to more than one cluster. The proposed framework addresses this problem by identification of points having significant membership to multiple classes, excluding them, and re-classifying them into single class assignments. To ascertain the superiority of the proposed algorithm, statistical tests have been performed on a variety of numerical and categorical real life data sets. Our empirical study shows that the performance of the proposed framework (in both terms of efficiency and effectiveness) significantly outperforms the state-of-the-art data clustering algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号