首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper, we introduce a new iterative algorithm for finding a common element of the set of common fixed points of an infinite family of notself strict pseudocontractions and the set of solutions of a general variational inequality problem for finite inverse-strongly accretive mappings in q-uniformly smooth Banach space. We obtain some strong convergence theorems under suitable conditions. Our results improve and extend the recent results announced by Qin et al. (J Comput Appl Math 233:231–240, 2009), Yao et al. (Acta Appl Math 110:1211–1244, 2010) and many others.  相似文献   

2.
Based on the very recent work by Dang and Gao (Invers Probl 27:1–9, 2011) and Wang and Xu (J Inequal Appl, doi:10.1155/2010/102085, 2010), and inspired by Yao (Appl Math Comput 186:1551–1558, 2007), Noor (J Math Anal Appl 251:217–229, 2000), and Xu (Invers Probl 22:2021–2034, 2006), we suggest a three-step KM-CQ-like method for solving the split common fixed-point problems in Hilbert spaces. Our results improve and develop previously discussed feasibility problem and related algorithms.  相似文献   

3.
In this paper, we consider a composite iterative algorithm with errors for approximating a common fixed points of non-self asymptotically nonexpansive mappings in the framework of Hilbert spaces. Our results improve and extend Chidume et al. (J. Math. Anal. Appl. 280:364–374, [2003]), Shahzad (Nonlinear Anal. 61:1031–1039, [2005]), Su and Qin (J. Appl. Math. Comput. 24:437–448, [2007]) and many others.  相似文献   

4.
In this paper, we introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem, the set of solutions of the variational inequality for β-inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in a Hilbert space. We show that the sequence converges strongly to a common element of the above three sets under some parameters controlling conditions. As applications, at the end of paper we utilize our results to study some convergence problem for finding the zeros of maximal monotone operators. Our results are generalizations and extensions of the results of Yao and Liou (Fixed Point Theory Appl. Article ID 384629, 10 p., 2008), Yao et al. (J. Nonlinear Convex Anal. 9(2):239–248, 2008) and Su and Li (Appl. Math. Comput. 181(1):332–341, 2006) and some recent results.  相似文献   

5.
In this paper, an iterative sequence for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of two relatively nonexpansive multi-valued mappings is introduced. This iterative scheme can be viewed as a multi-valued version of the corresponding one introduced by Zhang et al. (Comput Math Appl 61, 262–276, 2011) for two relatively nonexpansive multi-valued mappings. Finally, strong convergence of this sequence is studied in Banach spaces.  相似文献   

6.
In this paper, two kinds of parametric generalized vector equilibrium problems in normed spaces are studied. The sufficient conditions for the continuity of the solution mappings to the two kinds of parametric generalized vector equilibrium problems are established under suitable conditions. The results presented in this paper extend and improve some main results in Chen and Gong (Pac J Optim 3:511–520, 2010), Chen and Li (Pac J Optim 6:141–152, 2010), Chen et al. (J Glob Optim 45:309–318, 2009), Cheng and Zhu (J Glob Optim 32:543–550, 2005), Gong (J Optim Theory Appl 139:35–46, 2008), Li and Fang (J Optim Theory Appl 147:507–515, 2010), Li et al. (Bull Aust Math Soc 81:85–95, 2010) and Peng et al. (J Optim Theory Appl 152(1):256–264, 2011).  相似文献   

7.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

8.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

9.
We present a local as well as a semilocal convergence analysis for Newton’s method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. Our hypotheses involve m-Fréchet-differentiable operators and general Lipschitz-type hypotheses, where m≥2 is a positive integer. The new convergence analysis unifies earlier results; it is more flexible and provides a finer convergence analysis than in earlier studies such as Argyros in J. Comput. Appl. Math. 131:149–159, 2001, Argyros and Hilout in J. Appl. Math. Comput. 29:391–400, 2009, Argyros and Hilout in J. Complex. 28:364–387, 2012, Argyros et al. Numerical Methods for Equations and Its Applications, CRC Press/Taylor & Francis, New York, 2012, Gutiérrez in J. Comput. Appl. Math. 79:131–145, 1997, Ren and Argyros in Appl. Math. Comput. 217:612–621, 2010, Traub and Wozniakowski in J. Assoc. Comput. Mech. 26:250–258, 1979. Numerical examples are presented further validating the theoretical results.  相似文献   

10.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

11.
Ungar (Beyond the Einstein addition law and its gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrouector Spaces, 2001; Comput Math Appl 49:187–221, 2005; Comput Math Appl 53, 2007) introduced into hyperbolic geometry the concept of defect based on relativity addition of A. Einstein. Another approach is from Karzel (Resultate Math. 47:305–326, 2005) for the relation between the K-loop and the defect of an absolute plane in the sense (Karzel in Einführung in die Geometrie, 1973). Our main concern is to introduce a systematical exact definition for defect and area in the Beltrami–Klein model of hyperbolic geometry. Combining the ideas and methods of Karzel and Ungar give an elegant concept for defect and area in this model. In particular we give a rigorous and elementary proof for the defect formula stated (Ungar in Comput Math Appl 53, 2007). Furthermore, we give a formulary for area of circle in the Beltrami–Klein model of hyperbolic geometry.  相似文献   

12.
A local as well as a semilocal convergence analysis for Newton–Jarratt–type iterative method for solving equations in a Banach space setting is studied here using information only at a point via a gamma-type condition (Argyros in Approximate Solution of Operator Equations with Applications, [2005]; Wang in Chin. Sci. Bull. 42(7):552–555, [1997]). This method has already been examined by us in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]), where the order of convergence four was established using however information on the domain of the operator. In this study we also establish the same order of convergence under weaker conditions. Moreover we show that all though we use weaker conditions the results obtained here can be used to solve equations in cases where the results in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]) cannot apply. Our method is inverse free, and therefore cheaper at the second step in contrast with the corresponding two–step Newton methods. Numerical Examples are also provided.  相似文献   

13.
The purpose of this paper is to show that the iterative scheme recently studied by Xu (J Glob Optim 36(1):115–125, 2006) is the same as the one studied by Kamimura and Takahashi (J Approx Theory 106(2):226–240, 2000) and to give a supplement to these results. With the new technique proposed by Maingé (Comput Math Appl 59(1):74–79, 2010), we show that the convergence of the iterative scheme is established under another assumption. It is noted that if the computation error is zero or the approximate computation is exact, our new result is a genuine generalization of Xu’s result and Kamimura–Takahashi’s result.  相似文献   

14.
Mohammad Eslamian  Ali Abkar 《TOP》2014,22(2):554-570
In this paper, we propose a new general iterative scheme based on the viscosity approximation method for finding a common element of the set of solutions of the generalized mixed equilibrium problem and the set of all common fixed points of a finite family of nonexpansive semigroups. Then, we prove the strong convergence of the iterative scheme to find a unique solution of the variational inequality that is the optimality condition for the minimization problem. Our results extend and improve some recent results of Cianciaruso et al. (J. Optim. Theory Appl. 146:491–509, 2010), Kamraksa and Wangkeeree (J. Glob. Optim. 51:689–714, 2011), and many others.  相似文献   

15.
The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211–219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput 62:119–131, 1994) also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations in Zhang and Shu (J Comput Phys 229:8918–8934, 2010) and Zhang et?al. (J Scientific Comput, in press), to enforce the minimum entropy principle for high order finite volume and discontinuous Galerkin (DG) schemes.  相似文献   

16.
The purpose of this paper is to prove strong convergences of a modified implicit iteration process to a common fixed point for a finite family of generalized asymptotically quasi-nonexpansive mappings. The results presented in this paper improve and extend Shahzad and Zegeye’s corresponding results (Shahzad and Zegeye in Appl. Math. Comput. 189:1058–1065, 2007)  相似文献   

17.
Chen and Mangasarian (Comput Optim Appl 5:97–138, 1996) developed smoothing approximations to the plus function built on integral-convolution with density functions. X. Chen (Math Program 134:71–99, 2012) has recently picked up this idea constructing a large class of smoothing functions for nonsmooth minimization through composition with smooth mappings. In this paper, we generalize this idea by substituting the plus function for an arbitrary finite max-function. Calculus rules such as inner and outer composition with smooth mappings are provided, showing that the new class of smoothing functions satisfies, under reasonable assumptions, gradient consistency, a fundamental concept coined by Chen (Math Program 134:71–99, 2012). In particular, this guarantees the desired limiting behavior of critical points of the smooth approximations.  相似文献   

18.
Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided.  相似文献   

19.
The notions of upper and lower exhausters represent generalizations of the notions of exhaustive families of upper convex and lower concave approximations (u.c.a., l.c.a.). The notions of u.c.a.’s and l.c.a.’s were introduced by Pshenichnyi (Convex Analysis and Extremal Problems, Series in Nonlinear Analysis and its Applications, 1980), while the notions of exhaustive families of u.c.a.’s and l.c.a.’s were described by Demyanov and Rubinov in Nonsmooth Problems of Optimization Theory and Control, Leningrad University Press, Leningrad, 1982. These notions allow one to solve the problem of optimization of an arbitrary function by means of Convex Analysis thus essentially extending the area of application of Convex Analysis. In terms of exhausters it is possible to describe extremality conditions, and it turns out that conditions for a minimum are expressed via an upper exhauster while conditions for a maximum are formulated in terms of a lower exhauster (Abbasov and Demyanov (2010), Demyanov and Roshchina (Appl Comput Math 4(2): 114–124, 2005), Demyanov and Roshchina (2007), Demyanov and Roshchina (Optimization 55(5–6): 525–540, 2006)). This is why an upper exhauster is called a proper exhauster for minimization problems while a lower exhauster is called a proper one for maximization problems. The results obtained provide a simple geometric interpretation and allow one to construct steepest descent and ascent directions. Until recently, the problem of expressing extremality conditions in terms of adjoint exhausters remained open. Demyanov and Roshchina (Appl Comput Math 4(2): 114–124, 2005), Demyanov and Roshchina (Optimization 55(5–6): 525–540, 2006) was the first to derive such conditions. However, using the conditions obtained (unlike the conditions expressed in terms of proper exhausters) it was not possible to find directions of descent and ascent. In Abbasov (2011) new extremality conditions in terms of adjoint exhausters were discovered. In the present paper, a different proof of these conditions is given and it is shown how to find steepest descent and ascent conditions in terms of adjoint exhausters. The results obtained open the way to constructing numerical methods based on the usage of adjoint exhausters thus avoiding the necessity of converting the adjoint exhauster into a proper one.  相似文献   

20.
In this paper, we investigate the properties of mappings in harmonic Bergman spaces. First, we discuss the coefficient estimate, the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit disk $\mathbb D $ of $\mathbb C $ . Our results are generalizations of the corresponding ones in Chen et al. (Proc Am Math Soc 128:3231–3240, 2000), Chen et al. (J Math Anal Appl 373:102–110, 2011), Chen et al. (Ann Acad Sci Fenn Math 36:567–576, 2011). Then, we study the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit ball $\mathbb B ^{n}$ of $\mathbb C ^{n}$ . The obtained results are generalizations of the corresponding ones in Chen and Gauthier (Proc Am Math Soc 139:583–595 2011). At last, we get a characterization for mappings in harmonic Bergman spaces on $\mathbb B ^{n}$ in terms of their complex gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号