首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The computational complexity of linear and nonlinear programming problems depends on the number of objective functions and constraints involved and solving a large problem often becomes a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this complexity and simplifying a linear or nonlinear programming problem while maintaining the essential properties of the original system. Although a large number of redundancy detection methods have been proposed to simplify linear and nonlinear stochastic programming problems, very little research has been developed for fuzzy stochastic (FS) fractional programming problems. We propose an algorithm that allows to simultaneously detect both redundant objective function(s) and redundant constraint(s) in FS multi-objective linear fractional programming problems. More precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by transforming them in probabilistic–possibilistic constraints characterized by predetermined confidence levels. We present two numerical examples to demonstrate the applicability of the proposed algorithm and exhibit its efficacy.  相似文献   

2.
In recent decades, several multi-objective evolutionary algorithms have been successfully applied to a wide variety of multi-objective optimization problems. Along the way, several new concepts, paradigms and methods have emerged. Additionally, some authors have claimed that the application of multi-objective approaches might be useful even in single-objective optimization. Thus, several guidelines for solving single-objective optimization problems using multi-objective methods have been proposed. This paper offers a survey of the main methods that allow the use of multi-objective schemes for single-objective optimization. In addition, several open topics and some possible paths of future work in this area are identified.  相似文献   

3.
Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of today’s application coupled with its tendency of premature convergence due to the high convergence speeds, there is a need to improve the efficiency and effectiveness of MOPSO. In this paper a competitive and cooperative co-evolutionary approach is adapted for multi-objective particle swarm optimization algorithm design, which appears to have considerable potential for solving complex optimization problems by explicitly modeling the co-evolution of competing and cooperating species. The competitive and cooperative co-evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. The proposed competitive and cooperative co-evolutionary multi-objective particle swarm optimization algorithm (CCPSO) is validated through comparisons with existing state-of-the-art multi-objective algorithms using established benchmarks and metrics. Simulation results demonstrated that CCPSO shows competitive, if not better, performance as compared to the other algorithms.  相似文献   

4.
In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances.  相似文献   

5.
提高多目标决策问题评价结果的客观性、准确性,一直是决策科学研究的重要课题.结合熵权、DEA等数学方法对多目标决策问题进行研究,构造混合评价方法.首先通过构造熵权模型,获取主观权重;其次DEA的方法对多目标决策问题进行综合评价,得到问题的综合评价值,最后根据评价结果进行问题分析和判断.算例结果表明,方法能够应用于多目标决策问题,评价结果客观、准确.  相似文献   

6.
Solving multi-objective problems requires the evaluation of two or more conflicting objective functions, which often demands a high amount of computational power. This demand increases rapidly when estimating values for objective functions of dynamic, stochastic problems, since a number of observations are needed for each evaluation set, of which there could be many. Computer simulation applications of real-world optimisations often suffer due to this phenomenon. Evolutionary algorithms are often applied to multi-objective problems. In this article, the cross-entropy method is proposed as an alternative, since it has been proven to converge quickly in the case of single-objective optimisation problems. We adapted the basic cross-entropy method for multi-objective optimisation and applied the proposed algorithm to known test problems. This was followed by an application to a dynamic, stochastic problem where a computer simulation model provides the objective function set. The results show that acceptable results can be obtained while doing relatively few evaluations.  相似文献   

7.
This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature.  相似文献   

8.
Evolutionary algorithms are applied to problems that are not well understood as well as to problems in combinatorial optimization. The analysis of these search heuristics has been started for some well-known polynomial solvable problems. Such analyses are starting points for the analysis of evolutionary algorithms on difficult problems. We present the first runtime analysis of a multi-objective evolutionary algorithm on a NP-hard problem. The subject of our analysis is the multi-objective minimum spanning tree problem for which we give upper bounds on the expected time until a simple evolutionary algorithm has produced a population including for each extremal point of the Pareto front a corresponding spanning tree. These points are of particular interest as they give a 2-approximation of the Pareto front. We show that in expected pseudopolynomial time a population is produced that includes for each extremal point a corresponding spanning tree.  相似文献   

9.
首先引入了涉及高阶强Pre-invex函数的多目标优化问题m阶严格局部极小元的定义,在此基础上讨论了多目标优化问题的优化条件,最后研究了变分不等式的解与多目标优化问题高阶严格极小元之间的关系,其变分不等式的解正是多目标优化问题的高阶严格极小元,这些研究内容推广了Guneer-Bhatia给出的相关结论.  相似文献   

10.
In this paper, first-order optimality conditions for certain type of multi-objective optimisation problems are discussed under univexity concept. A number of duality results corresponding to this sort of multi-objective problems are also shown.  相似文献   

11.
Multi-objective vehicle routing problems   总被引:1,自引:0,他引:1  
Routing problems, such as the traveling salesman problem and the vehicle routing problem, are widely studied both because of their classic academic appeal and their numerous real-life applications. Similarly, the field of multi-objective optimization is attracting more and more attention, notably because it offers new opportunities for defining problems. This article surveys the existing research related to multi-objective optimization in routing problems. It examines routing problems in terms of their definitions, their objectives, and the multi-objective algorithms proposed for solving them.  相似文献   

12.
Pareto-optimality conditions are crucial when dealing with classic multi-objective optimization problems. Extensions of these conditions to the fuzzy domain have been discussed and addressed in recent literature. This work presents a novel approach based on the definition of a fuzzily ordered set with a view to generating the necessary conditions for the Pareto-optimality of candidate solutions in the fuzzy domain. Making use of the conditions generated, one can characterize fuzzy efficient solutions by means of carefully chosen mono-objective problems and Karush-Kuhn-Tucker conditions to fuzzy non-dominated solutions. The uncertainties are inserted into the formulation of the studied fuzzy multi-objective optimization problem by means of fuzzy coefficients in the objective function. Some numerical examples are analytically solved to illustrate the efficiency of the proposed approach.  相似文献   

13.
In the last few years, a significant number of multi-objective metaheuristics have been proposed in the literature in order to address real-world problems. Local search methods play a major role in many of these metaheuristic procedures. In this paper, we adapt a recent and popular indicator-based selection method proposed by Zitzler and Künzli in 2004, in order to define a population-based multi-objective local search. The proposed algorithm is designed in order to be easily adaptable, parameter independent and to have a high convergence rate. In order to evaluate the capacity of our algorithm to reach these goals, a large part of the paper is dedicated to experiments. Three combinatorial optimisation problems are tested: a flow shop problem, a ring star problem and a nurse scheduling problem. The experiments show that our algorithm can be applied with success to different types of multi-objective optimisation problems and that it outperforms some classical metaheuristics. Furthermore, the parameter sensitivity analysis enables us to provide some useful guidelines about how to set the parameters.  相似文献   

14.
Due to the vagaries of optimization problems encountered in practice, users resort to different algorithms for solving different optimization problems. In this paper, we suggest and evaluate an optimization procedure which specializes in solving a wide variety of optimization problems. The proposed algorithm is designed as a generic multi-objective, multi-optima optimizer. Care has been taken while designing the algorithm such that it automatically degenerates to efficient algorithms for solving other simpler optimization problems, such as single-objective uni-optimal problems, single-objective multi-optima problems and multi-objective uni-optimal problems. The efficacy of the proposed algorithm in solving various problems is demonstrated on a number of test problems chosen from the literature. Because of its efficiency in handling different types of problems with equal ease, this algorithm should find increasing use in real-world optimization problems.  相似文献   

15.
We develop exact algorithms for multi-objective integer programming (MIP) problems. The algorithms iteratively generate nondominated points and exclude the regions that are dominated by the previously-generated nondominated points. One algorithm generates new points by solving models with additional binary variables and constraints. The other algorithm employs a search procedure and solves a number of models to find the next point avoiding any additional binary variables. Both algorithms guarantee to find all nondominated points for any MIP problem. We test the performance of the algorithms on randomly-generated instances of the multi-objective knapsack, multi-objective shortest path and multi-objective spanning tree problems. The computational results show that the algorithms work well.  相似文献   

16.
An approach to non-convex multi-objective optimization problems is considered where only the values of objective functions are required by the algorithm. The proposed approach is a generalization of the probabilistic branch-and-bound approach well applicable to complicated problems of single-objective global optimization. In the present paper the concept of probabilistic branch-and-bound based multi-objective optimization algorithms is discussed, and some illustrations are presented.  相似文献   

17.
A multi-objective optimization evolutionary algorithm incorporating preference information interactively is proposed. A new nine grade evaluation method is used to quantify the linguistic preferences expressed by the decision maker (DM) so as to reduce his/her cognitive overload. When comparing individuals, the classical Pareto dominance relation is commonly used, but it has difficulty in dealing with problems involving large numbers of objectives in which it gives an unmanageable and large set of Pareto optimal solutions. In order to overcome this limitation, a new outranking relation called “strength superior” which is based on the preference information is constructed via a fuzzy inference system to help the algorithm find a few solutions located in the preferred regions, and the graphical user interface is used to realize the interaction between the DM and the algorithm. The computational complexity of the proposed algorithm is analyzed theoretically, and its ability to handle preference information is validated through simulation. The influence of parameters on the performance of the algorithm is discussed and comparisons to another preference guided multi-objective evolutionary algorithm indicate that the proposed algorithm is effective in solving high dimensional optimization problems.  相似文献   

18.
When solving real-world optimization problems, evolutionary algorithms often require a large number of fitness evaluations in order to converge to the global optima. Attempts have been made to find techniques to reduce the number of fitness function evaluations. We propose a novel framework in the context of multi-objective optimization where fitness evaluations are distributed by creating a limited number of adaptive spheres spanning the search space. These spheres move towards the global Pareto front as components of a swarm optimization system. We call this process localization. The contribution of the paper is a general framework for distributed evolutionary multi-objective optimization, in which the individuals in each sphere can be controlled by any existing evolutionary multi-objective optimization algorithm in the literature.  相似文献   

19.
In this paper we propose a multi-objective evolutionary algorithm to generate Mamdani fuzzy rule-based systems with different good trade-offs between complexity and accuracy. The main novelty of the algorithm is that both rule base and granularity of the uniform partitions defined on the input and output variables are learned concurrently. To this aim, we introduce the concepts of virtual and concrete rule bases: the former is defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets, while the latter takes into account, for each variable, a number of fuzzy sets as determined by the specific partition granularity of that variable. We exploit a chromosome composed of two parts, which codify the variables partition granularities, and the virtual rule base, respectively. Genetic operators manage virtual rule bases, whereas fitness evaluation relies on an appropriate mapping strategy between virtual and concrete rule bases. The algorithm has been tested on two real-world regression problems showing very promising results.  相似文献   

20.
Studies performed on the optimization of composite structures by coworkers of the Institute of Polymers Mechanics of the Latvian Academy of Sciences in recent years are reviewed. The possibility of controlling the geometry and anisotropy of laminar composite structures will make it possible to design articles that best satisfy the requirements established for them. Conflicting requirements such as maximum bearing capacity, minimum weight and/or cost, prescribed thermal conductivity and thermal expansion, etc. usually exist for optimal design. This results in the multi-objective compromise optimization of structures. Numerical methods have been developed for solution of problems of multi-objective optimization of composite structures; parameters of the structure of the reinforcement and the geometry of the design are assigned as controlling parameters. Programs designed to run on personal computers have been compiled for multi-objective optimization of the properties of composite materials, plates, and shells. Solutions are obtained for both linear and nonlinear models. The programs make it possible to establish the Pareto compromise region and special multicriterial solutions. The problem of the multi-objective optimization of the elastic moduli of a spatially reinforced fiberglass with stochastic stiffness parameters has been solved.The region of permissible solutions and the Pareto region have been found for the elastic moduli. The dimensions of the scatter ellipse have been determined for a multidimensional Gaussian probability distribution where correlation between the composite's properties being optimized are accounted for. Two types of problems involving the optimization of a laminar rectangular composite plate are considered: the plate is considered elastic and anisotropic in the first case, and viscoelastic properties are accounted for in the second. The angle of reinforcement and the relative amount of fibers in the longitudinal direction are controlling parameters. The optimized properties are the critical stresses, thermal conductivity, and thermal expansion. The properties of a plate are determined by the properties of the components in the composite, eight of which are stochastic. The region of multi-objective compromise solutions is presented, and the parameters of the scatter ellipses of the properties are given.Translated from Mekhanika Kompozitnykh Materialov, Vol. 32, No. 3, pp. 363–376, May–June, 1996. Institute of Polymer Mechanics, Latvian Academy of Sciences, Riga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号