首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
一些类型的数学规划问题的全局最优解   总被引:4,自引:0,他引:4  
本文对严格单调函数给出了几个凸化和凹化的方法,利用这些方法可将一个严格单调的规划问题转化为一个等价的标准D.C.规划或凹极小问题.本文还对只有一个严格单调的约束的非单调规划问题给出了目标函数的一个凸化和凹化方法,利用这些方法可将只有一个严格单调约束的非单调规划问题转化为一个等价的凹极小问题.再利用已有的关于D.C.规划和凹极小的算法,可以求得原问题的全局最优解.  相似文献   

2.
A kind of general convexification and concavification methods is proposed for solving some classes of global optimization problems with certain monotone properties. It is shown that these minimization problems can be transformed into equivalent concave minimization problem or reverse convex programming problem or canonical D.C. programming problem by using the proposed convexification and concavification schemes. The existing algorithms then can be used to find the global solutions of the transformed problems.  相似文献   

3.
首先将一个具有多个约束的规划问题转化为一个只有一个约束的规划问题,然后通过利用这个单约束的规划问题,对原来的多约束规划问题提出了一些凸化、凹化的方法,这样这些多约束的规划问题可以被转化为一些凹规划、反凸规划问题.最后,还证明了得到的凹规划和反凸规划的全局最优解就是原问题的近似全局最优解.  相似文献   

4.
本文提出了一个指数型凸化,凹化变换,并证明了单调非线性规划总能变换成相应的凹规划或凸规划.还证明了带某种类型线性或非线性约束的非线性规划在适当条件下能变换成单调非线性规划.  相似文献   

5.
This paper presents a canonical duality theory for solving quadratic minimization problems subjected to either box or integer constraints. Results show that under Gao and Strang’s general global optimality condition, these well-known nonconvex and discrete problems can be converted into smooth concave maximization dual problems over closed convex feasible spaces without duality gap, and can be solved by well-developed optimization methods. Both existence and uniqueness of these canonical dual solutions are presented. Based on a second-order canonical dual perturbation, the discrete integer programming problem is equivalent to a continuous unconstrained Lipschitzian optimization problem, which can be solved by certain deterministic technique. Particularly, an analytical solution is obtained under certain condition. A fourth-order canonical dual perturbation algorithm is presented and applications are illustrated. Finally, implication of the canonical duality theory for the popular semi-definite programming method is revealed.  相似文献   

6.
In this paper, we are concerned with the development of parallel algorithms for solving some classes of nonconvex optimization problems. We present an introductory survey of parallel algorithms that have been used to solve structured problems (partially separable, and large-scale block structured problems), and algorithms based on parallel local searches for solving general nonconvex problems. Indefinite quadratic programming posynomial optimization, and the general global concave minimization problem can be solved using these approaches. In addition, for the minimum concave cost network flow problem, we are going to present new parallel search algorithms for large-scale problems. Computational results of an efficient implementation on a multi-transputer system will be presented.  相似文献   

7.
单调优化是指目标函数与约束函数均为单调函数的全局优化问题.本文提出一种新的凸化变换方法把单调函数化为凸函数,进而把单调优化问题化为等价的凸极大或凹极小问题,然后采用Hoffman的外逼近方法来求得问题的全局最优解.我们把这种凸化方法同Tuy的Polyblock外逼近方法作了比较,通过数值比较可以看出本文提出的凸化的方法在收敛速度上明显优于Polyblock方法.  相似文献   

8.
We show the importance of exploiting the complementary convex structure for efficiently solving a wide class of specially structured nonconvex global optimization problems. Roughly speaking, a specific feature of these problems is that their nonconvex nucleus can be transformed into a complementary convex structure which can then be shifted to a subspace of much lower dimension than the original underlying space. This approach leads to quite efficient algorithms for many problems of practical interest, including linear and convex multiplicative programming problems, concave minimization problems with few nonlinear variables, bilevel linear optimization problems, etc...  相似文献   

9.
《Optimization》2012,61(6):605-625
A class of convexification and concavification methods are proposed for solving some classes of non-monotone optimization problems. It is shown that some classes of non-monotone optimization problems can be converted into better structured optimization problems, such as, concave minimization problems, reverse convex programming problems, and canonical D.C. programming problems by the proposed convexification and concavification methods. The equivalence between the original problem and the converted better structured optimization problem is established.  相似文献   

10.
A convexification method is proposed for solving a class of global optimization problems with certain monotone properties. It is shown that this class of problems can be transformed into equivalent concave minimization problems using the proposed convexification schemes. An outer approximation method can then be used to find the global solution of the transformed problem. Applications to mixed-integer nonlinear programming problems arising in reliability optimization of complex systems are discussed and satisfactory numerical results are presented.  相似文献   

11.
An important approach in multiple criteria linear programming is the optimization of some function over the efficient or weakly-efficient set. This is a very difficult nonconvex optimization problem, even for the case that the function to be optimized is linear. In this article we consider the problem of maximizing a concave function over the efficient or weakly-efficient set. We show that this problem can essentially be formulated as a special global optimization problem in the space of the extreme criteria of the underlying multiple criteria linear program. An algorithm of branch and bound type is proposed for solving the resulting problem.  相似文献   

12.
The subject of this article is a class of global optimization problems, in which the variables can be divided into two groups such that, in each group, the functions involved have the same structure (e.g. linear, convex or concave, etc.). Based on the decomposition idea of Benders (Ref. 1), a corresponding master problem is defined on the space of one of the two groups of variables. The objective function of this master problem is in fact the optimal value function of a nonlinear parametric optimization problem. To solve the resulting master problem, a branch-and-bound scheme is proposed, in which the estimation of the lower bounds is performed by applying the well-known weak duality theorem in Lagrange duality. The results of this article concentrate on two subjects: investigating the convergence of the general algorithm and solving dual problems of some special classes of nonconvex optimization problems. Based on results in sensitivity and stability theory and in parametric optimization, conditions for the convergence are established by investigating the so-called dual properness property and the upper semicontinuity of the objective function of the master problem. The general algorithm is then discussed in detail for some nonconvex problems including concave minimization problems with a special structure, general quadratic problems, optimization problems on the efficient set, and linear multiplicative programming problems.  相似文献   

13.
This paper discusses an algorithm for generalized convex multiplicative programming problems, a special class of nonconvex minimization problems in which the objective function is expressed as a sum ofp products of two convex functions. It is shown that this problem can be reduced to a concave minimization problem with only 2p variables. An outer approximation algorithm is proposed for solving the resulting problem.  相似文献   

14.
We propose in this paper a general D.C. decomposition scheme for constructing SDP relaxation formulations for a class of nonconvex quadratic programs with a nonconvex quadratic objective function and convex quadratic constraints. More specifically, we use rank-one matrices and constraint matrices to decompose the indefinite quadratic objective into a D.C. form and underestimate the concave terms in the D.C. decomposition formulation in order to get a convex relaxation of the original problem. We show that the best D.C. decomposition can be identified by solving an SDP problem. By suitably choosing the rank-one matrices and the linear underestimation, we are able to construct convex relaxations that dominate Shor’s SDP relaxation and the strengthened SDP relaxation. We then propose an extension of the D.C. decomposition to generate an SDP bound that is tighter than the SDP+RLT bound when additional box constraints are present. We demonstrate via computational results that the optimal D.C. decomposition schemes can generate both tight SDP bounds and feasible solutions with good approximation ratio for nonconvex quadratically constrained quadratic problems.  相似文献   

15.
We consider the minimization of a p-Ginzburg-Landau energy functional over the class of radially symmetric functions of degree one. We prove the existence of a unique minimizer in this class, and show that its modulus is monotone increasing and concave. We also study the asymptotic limit of the minimizers as p ?? ??. Finally, we prove that the radially symmetric solution is locally stable for 2?<?p????4.  相似文献   

16.
Minimal concave cost rebalance of a portfolio to the efficient frontier   总被引:3,自引:0,他引:3  
One usually constructs a portfolio on the efficient frontier, but it may not be efficient after, say three months since the efficient frontier will shift as the elapse of time. We then have to rebalance the portfolio if the deviation is no longer acceptable. The method to be proposed in this paper is to find a portfolio on the new efficient frontier such that the total transaction cost required for this rebalancing is minimal. This problem results in a nonconvex minimization problem, if we use mean-variance model. In this paper we will formulate this problem by using absolute deviation as the measure of risk and solve the resulting linearly constrained concave minimization problem by a branch and bound algorithm successfully applied to portfolio optimization problem under concave transaction costs. It will be demonstrated that this method is efficient and that it leads to a significant reduction of transaction costs. Key words.portfolio optimization – rebalance – mean-absolute deviation model – concave cost minimization – optimization over the efficient set – global optimizationMathematics Subject Classification (1991):20E28, 20G40, 20C20  相似文献   

17.
In this paper, we study LTS and LMS regression, two high breakdown regression estimators, from an optimization point of view. We show that LTS regression is a nonlinear optimization problem that can be treated as a concave minimization problem over a polytope. We derive several important properties of the corresponding objective function that can be used to obtain algorithms for the exact solution of LTS regression problems, i.e., to find a global optimum to the problem. Because of today's limited problem-solving capabilities in exact concave minimization, we give an easy-to-implement pivoting algorithm to determine regression parameters corresponding to local optima of the LTS regression problem. For the LMS regression problem, we briefly survey the existing solution methods which are all based on enumeration. We formulate the LMS regression problem as a mixed zero-one linear programming problem which we analyze in depth to obtain theoretical insights required for future algorithmic and computational work.  相似文献   

18.
边界约束非凸二次规划问题的分枝定界方法   总被引:2,自引:0,他引:2  
本文是研究带有边界约束非凸二次规划问题,我们把球约束二次规划问题和线性约束凸二次规划问题作为子问题,分明引用了它们的一个求整体最优解的有效算法,我们提出几种定界的紧、松驰策略,给出了求解原问题整体最优解的分枝定界算法,并证明了该算法的收敛性,不同的定界组合就可以产生不同的分枝定界算法,最后我们简单讨论了一般有界凸域上非凸二次规划问题求整体最优解的分枝与定界思想。  相似文献   

19.
On piecewise quadratic Newton and trust region problems   总被引:1,自引:0,他引:1  
Some recent algorithms for nonsmooth optimization require solutions to certain piecewise quadratic programming subproblems. Two types of subproblems are considered in this paper. The first type seeks the minimization of a continuously differentiable and strictly convex piecewise quadratic function subject to linear equality constraints. We prove that a nonsmooth version of Newton’s method is globally and finitely convergent in this case. The second type involves the minimization of a possibly nonconvex and nondifferentiable piecewise quadratic function over a Euclidean ball. Characterizations of the global minimizer are studied under various conditions. The results extend a classical result on the trust region problem. Partially supported by National University of Singapore under grant 930033.  相似文献   

20.
We describe a general scheme for solving nonconvex optimization problems, where in each iteration the nonconvex feasible set is approximated by an inner convex approximation. The latter is defined using an upper bound on the nonconvex constraint functions. Under appropriate conditions, a monotone convergence to a KKT point is established. The scheme is applied to truss topology design (TTD) problems, where the nonconvex constraints are associated with bounds on displacements and stresses. It is shown that the approximate convex problem solved at each inner iteration can be cast as a conic quadratic programming problem, hence large scale TTD problems can be efficiently solved by the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号