首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a broad class of queueing models with random state-dependent vacation periods, which arise in the analysis of queue-based back-off algorithms in wireless random-access networks. In contrast to conventional models, the vacation periods may be initiated after each service completion, and can be randomly terminated with certain probabilities that depend on the queue length. We first present exact queue-length and delay results for some specific cases and we derive stochastic bounds for a much richer set of scenarios. Using these, together with stochastic relations between systems with different vacation disciplines, we examine the scaled queue length and delay in a heavy-traffic regime, and demonstrate a sharp trichotomy, depending on how the activation rate and vacation probability behave as function of the queue length. In particular, the effect of the vacation periods may either (i) completely vanish in heavy-traffic conditions, (ii) contribute an additional term to the queue lengths and delays of similar magnitude, or even (iii) give rise to an order-of-magnitude increase. The heavy-traffic trichotomy provides valuable insight into the impact of the back-off algorithms on the delay performance in wireless random-access networks.  相似文献   

2.
Whitt  Ward  You  Wei 《Queueing Systems》2020,95(1-2):53-68

This paper studies stationary customer flows in an open queueing network. The flows are the processes counting customers flowing from one queue to another or out of the network. We establish the existence of unique stationary flows in generalized Jackson networks and convergence to the stationary flows as time increases. We establish heavy-traffic limits for the stationary flows, allowing an arbitrary subset of the queues to be critically loaded. The heavy-traffic limit with a single bottleneck queue is especially tractable because it yields limit processes involving one-dimensional reflected Brownian motion. That limit plays an important role in our new nonparametric decomposition approximation of the steady-state performance using indices of dispersion and robust optimization.

  相似文献   

3.
Corrected asymptotics for a multi-server queue in the Halfin-Whitt regime   总被引:1,自引:0,他引:1  
To investigate the quality of heavy-traffic approximations for queues with many servers, we consider the steady-state number of waiting customers in an M/D/s queue as s→∞. In the Halfin-Whitt regime, it is well known that this random variable converges to the supremum of a Gaussian random walk. This paper develops methods that yield more accurate results in terms of series expansions and inequalities for the probability of an empty queue, and the mean and variance of the queue length distribution. This quantifies the relationship between the limiting system and the queue with a small or moderate number of servers. The main idea is to view the M/D/s queue through the prism of the Gaussian random walk: as for the standard Gaussian random walk, we provide scalable series expansions involving terms that include the Riemann zeta function.   相似文献   

4.
We consider a class of two-queue polling systems with exhaustive service, where the order in which the server visits the queues is governed by a discrete-time Markov chain. For this model, we derive an expression for the probability generating function of the joint queue length distribution at polling epochs. Based on these results, we obtain explicit expressions for the Laplace–Stieltjes transforms of the waiting-time distributions and the probability generating function of the joint queue length distribution at an arbitrary point in time. We also study the heavy-traffic behaviour of properly scaled versions of these distributions, which results in compact and closed-form expressions for the distribution functions themselves. The heavy-traffic behaviour turns out to be similar to that of cyclic polling models, provides insights into the main effects of the model parameters when the system is heavily loaded, and can be used to derive closed-form approximations for the waiting-time distribution or the queue length distribution.  相似文献   

5.
Whitt  Ward 《Queueing Systems》2004,46(3-4):507-536
We establish heavy-traffic stochastic-process limits for the queue-length and overflow stochastic processes in the standard single-server queue with finite waiting room (G/G/1/K). We show that, under regularity conditions, the content and overflow processes in related single-server models with finite waiting room, such as the finite dam, satisfy the same heavy-traffic stochastic-process limits. As a consequence, we obtain heavy-traffic limits for the proportion of customers or input lost over an initial interval. Except for an interchange of the order of two limits, we thus obtain heavy-traffic limits for the steady-state loss proportions. We justify the interchange of limits in M/GI/1/K and GI/M/1/K special cases of the standard GI/GI/1/K model by directly establishing local heavy-traffic limits for the steady-state blocking probabilities.  相似文献   

6.
Tao Yang  Hui Li 《Queueing Systems》1995,21(1-2):199-215
In this paper, we study the steady-state queue size distribution of the discrete-timeGeo/G/1 retrial queue. We derive analytic formulas for the probability generating function of the number of customers in the system in steady-state. It is shown that the stochastic decomposition law holds for theGeo/G/1 retrial queue. Recursive formulas for the steady-state probabilities are developed. Computations based on these recursive formulas are numerically stable because the recursions involve only nonnegative terms. Since the regularGeo/G/1 queue is a special case of theGeo/G/1 retrial queue, the recursive formulas can also be used to compute the steady-state queue size distribution of the regularGeo/G/1 queue. Furthermore, it is shown that a continuous-timeM/G/1 retrial queue can be approximated by a discrete-timeGeo/G/1 retrial queue by dividing the time into small intervals of equal length and the approximation approaches the exact when the length of the interval tends to zero. This relationship allows us to apply the recursive formulas derived in this paper to compute the approximate steady-state queue size distribution of the continuous-timeM/G/1 retrial queue and the regularM/G/1 queue.Partially supported by the Natural Sciences and Engineering Research Council of Canada through grant OGP0046415.Partially supported by the Natural Sciences and Engineering Research Council of Canada through grant OGP0105828.  相似文献   

7.
Leemans  H. 《Queueing Systems》2000,36(1-3):269-286
We analyze a two-class two-server system with nonpreemptive heterogeneous priority structures. We use matrix–geometric techniques to determine the stationary queue length distributions. Numerical solution of the matrix–geometric model requires that the number of phases be truncated and it is shown how this affects the accuracy of the results. We then establish and prove upper and lower bounds for the mean queue lengths under the assumption that the classes have equal mean service times. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
9.
In this paper we study a system consisting of two parallel servers withdifferent service rates. Jobs arrive according to a Poisson stream and generate an exponentially distributed workload. On arrival a job joins the shortest queue and in case both queues have equal lengths, he joins the first queue with probabilityq and the second one with probability 1 −q, whereq is an arbitrary number between 0 and 1. In a previous paper we showed for the symmetric problem, that is for equal service rates andq = 1/2, that the equilibrium distribution of the lengths of the two queues can be exactly represented by an infinite sum of product form solutions by using an elementary compensation procedure. The main purpose of the present paper is to prove a similar product form result for the asymmetric problem by using a generalization of the compensation procedure. Furthermore, it is shown that the product form representation leads to a numerically efficient algorithm. Essentially, the method exploits the convergence properties of the series of product forms. Because of the fast convergence an efficient method is obtained with upper and lower bounds for the exact solution. For states further away from the origin the convergence is faster. This aspect is also exploited in the paper.  相似文献   

10.
The discriminatory processor sharing queues with multiple classes of customers (abbreviated as DPS queues) are an important but difficult research direction in queueing theory, and it has many important practical applications in the fields of, such as, computer networks, manufacturing systems, transportation networks, and so forth. Recently, researchers have carried out some key work for the DPS queues. They gave the generating function of the steady-state joint queue lengths, which leads to the first two moments of the steady-state joint queue lengths. However, using the generating function to provide explicit expressions for the steady-state joint queue lengths has been a difficult and challenging problem for many years. Based on this, this paper applies the maximum entropy principle in the information theory to providing an approximate expression with high precision, and this approximate expression can have the same first three moments as those of its exact expression. On the other hand, this paper gives efficiently numerical computation by means of this approximate expression, and analyzes how the key variables of this approximate expression depend on the original parameters of this queueing system in terms of some numerical experiments. Therefore, this approximate expression has important theoretical significance to promote practical applications of the DPS queues. At the same time, not only do the methodology and results given in this paper provide a new line in the study of DPS queues, but they also provide the theoretical basis and technical support for how to apply the information theory to the study of queueing systems, queueing networks and more generally, stochastic models.  相似文献   

11.
This paper deals with a multi-class priority queueing system with customer transfers that occur only from lower priority queues to higher priority queues. Conditions for the queueing system to be stable/unstable are obtained. An auxiliary queueing system is introduced, for which an explicit product-form solution is found for the stationary distribution of queue lengths. Sample path relationships between the queue lengths in the original queueing system and the auxiliary queueing system are obtained, which lead to bounds on the stationary distribution of the queue lengths in the original queueing system. Using matrix-analytic methods, it is shown that the tail asymptotics of the stationary distribution is exact geometric, if the queue with the highest priority is overloaded.   相似文献   

12.
Recently Gamarnik and Zeevi (Ann. Appl. Probab. 16:56–90, 2006) and Budhiraja and Lee (Math. Oper. Res. 34:45–56, 2009) established that, under suitable conditions, a sequence of the stationary scaled queue lengths in a generalized Jackson queueing network converges to the stationary distribution of multidimensional reflected Brownian motion in the heavy-traffic regime. In this work we study the corresponding problem in multiclass queueing networks (MQNs).  相似文献   

13.
14.
We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random epochs, after which the rate is inclined to revert to lower values. Exponential decay of the shot noise is assumed, so that the queueing systems are amenable to analysis. In particular, we perform transient analysis on the number of jobs in the queue jointly with the value of the driving shot-noise process. Additionally, we derive heavy-traffic asymptotics for the number of jobs in the system by using a linear scaling of the shot intensity. First we focus on a one-dimensional setting in which there is a single infinite-server queue, which we then extend to a network setting.  相似文献   

15.
We develop a general method to bound the spreading of an entire wavepacket under Schrödinger dynamics from above. This method derives upper bounds on time-averaged moments of the position operator from lower bounds on norms of transfer matrices at complex energies.

This general result is applied to the Fibonacci operator. We find that at sufficiently large coupling, all transport exponents take values strictly between zero and one. This is the first rigorous result on anomalous transport.

For quasi-periodic potentials associated with trigonometric polynomials, we prove that all lower transport exponents and, under a weak assumption on the frequency, all upper transport exponents vanish for all phases if the Lyapunov exponent is uniformly bounded away from zero. By a well-known result of Herman, this assumption always holds at sufficiently large coupling. For the particular case of the almost Mathieu operator, our result applies for coupling greater than two.

  相似文献   


16.
This paper studies the asymptotic behavior of the steady-state waiting time, W , of the M/G/1 queue with Subexponential processing times for different combinations of traffic intensities and overflow levels. In particular, we provide insights into the regions of large deviations where the so-called heavy-traffic approximation and heavy-tail asymptotic hold. For queues whose service time distribution decays slower than \(e^{-\sqrt{t}}\) we identify a third region of asymptotics where neither the heavy-traffic nor the heavy-tail approximations are valid. These results are obtained by deriving approximations for P(W >x) that are either uniform in the traffic intensity as the tail value goes to infinity or uniform on the positive axis as the traffic intensity converges to one. Our approach makes clear the connection between the asymptotic behavior of the steady-state waiting time distribution and that of an associated random walk.  相似文献   

17.
Classical analyses of the dynamic control of multi-class queueing systems frequently yield simple priority policies as optimal. However, such policies can often result in excessive queue lengths for the low priority jobs/customers. We propose a stochastic optimisation problem in the context of a two class M/M/1 system which seeks to mitigate this through the imposition of constraints on the second moments of queue lengths. We analyse the performance of two families of parametrised heuristic policies for this problem. To evaluate these policies we develop lower bounds on the optimum cost through the achievable region approach. A numerical study points to the strength of performance of threshold policies and to directions for future research.  相似文献   

18.
van der Mei  R.D. 《Queueing Systems》1999,31(3-4):265-294
We study an asymmetric cyclic polling model with general mixtures of exhaustive and gated service, and with zero switch-over times, in heavy traffic. We derive closed-form expressions for all moments of the steady-state delay at each of the queues, under standard heavy-traffic scalings. The expressions obtained provide new and useful insights into the behavior of polling systems under heavy-load conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Using the multiple stochastic integrals, we prove an existence and uniqueness result for a linear stochastic equation driven by the fractional Brownian motion with any Hurst parameter. We study both the one- and two-parameter cases. When the drift is zero, we show that in the one-parameter case the solution is an exponential—thus positive—function while in the two-parameter setting the solution is negative on a non-negligible set.  相似文献   

20.
Moment inequalities for the discrete-time bulk service queue   总被引:1,自引:0,他引:1  
For the discrete-time bulk service queueing model, the mean and variance of the steady-state queue length can be expressed in terms of moments of the arrival distribution and series of the zeros of a characteristic equation. In this paper we investigate the behaviour of these series. In particular, we derive bounds on the series, from which bounds on the mean and variance of the queue length follow. We pay considerable attention to the case in which the arrivals follow a Poisson distribution. For this case, additional properties of the series are proved leading to even sharper bounds. The Poisson case serves as a pilot study for a broader range of distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号