首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We consider partial differential equations of a variational problem admitting infinite-dimensional Lie symmetry algebras parameterized by arbitrary functions of dependent variables and their derivatives. We show that unlike differential systems with symmetry algebras parameterized by arbitrary functions of independent variables, these equations have infinite sets of essential conservation laws. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 151, No. 3, pp. 518–528, June, 2007.  相似文献   

2.
3.
We consider conservation laws for second-order parabolic partial differential equations for one function of three independent variables. An explicit normal form is given for such equations having a nontrivial conservation law. It is shown that any such equation whose space of conservation laws has dimension at least four is locally contact equivalent to a quasi-linear equation. Examples are given of nonlinear equations that have an infinite-dimensional space of conservation laws parameterized (in the sense of Cartan-K?hler) by two arbitrary functions of one variable. Furthermore, it is shown that any equation whose space of conservation laws is larger than this is locally contact equivalent to a linear equation.  相似文献   

4.
We study a new property of integrable systems, the existence of infinitely many local three-dimensional conservation laws for pairs of integrable two-dimensional hydrodynamic chains. We describe an effective algorithm for successively computing an infinite set of three-dimensional conservation laws for the Benney pair of commuting flows.  相似文献   

5.
A class of partial differential equations (a conservation law and four balance laws), with four independent variables and involving sixteen arbitrary continuously differentiable functions, is considered in the framework of equivalence transformations. These are point transformations of differential equations involving arbitrary elements and live in an augmented space of independent, dependent and additional variables representing values taken by the arbitrary elements. Projecting the admitted infinitesimal equivalence transformations into the space of independent and dependent variables, we determine some finite transformations mapping the system of balance laws to an equivalent one with the same differential structure but involving different arbitrary elements; in particular, the target system we want to recover is an autonomous system of conservation laws. An application to a physical problem is considered.  相似文献   

6.
The problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 333(1) (2007) 311–328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler–Lagrange equations for some variational functional. After studying Lie point and Lie–Bäcklund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case.  相似文献   

7.
Conservation laws of a nonlinear (2+1) wave equation utt = (f(u)ux)x +  (g(u)uy)y involving arbitrary functions of the dependent variable are obtained, by writing the equation in the partial Euler-Lagrange form. Noether-type operators associated with the partial Lagrangian are obtained for all possible cases of the arbitrary functions. If either of f(u) or g(u) is an arbitrary nonconstant function, we show that there are an infinite number of conservation laws. If both f(u) and g(u) are arbitrary nonconstant functions, it is shown that there exist infinite number of conservation laws when f′(u) and g′(u) are linearly dependent, otherwise there are eight conservation laws. Finally, we apply the generalized double reduction theorem to a nonlinear (2+1) wave equation when f′(u) and g′(u) are linearly independent.  相似文献   

8.
In this paper, further study of the conservation laws of the nonlinear (1+1) wave equation involving two arbitrary functions of the dependent variable is performed. This equation is not derivable from a variational principle. By writing the equation, admitting a partial Lagrangian, in the partial Euler–Lagrange   form, partial Noether operators associated with the partial Lagrangian are obtained for all possible cases of the functions. These partial Noether operators do not form a Lie algebra in general. Partial Noether operators aid via a formula in the construction of the conservation laws of the equation. We obtain new conservation laws for the equation which have not been presented in the earlier literature.  相似文献   

9.
The general solution to static and/or dynamic linear elasticity is a transformation between the displacements and new arbitrary functions, whose conservativeness depends on some independent partial differential equations (PDEs) satisfied by the new arbitrary functions. Zhang's general solutions are mathematically appropriate since the displacements are expressed in terms of two new arbitrary functions, and the sum of the highest order derivative added together from the independent PDEs satisfied by the two new arbitrary functions is the same as that of Navier–Cauchy equations. Therefore, the following points should be emphasized: (i) the independent PDEs come from the Laplace and D'Alembert operators acting on the two new arbitrary functions in static and dynamic general solutions, respectively, and it is found that the two new arbitrary functions are related to the rotations, first strain invariant and distortion; (ii) especially, conservation laws constructed from the equations satisfied by the spatial integrals of functions hold true, although some arbitrary functions of the spatial integrals have been canceled. Based on these facts, since Noether's identity not only can be applied to a Lagrangian but also can be used to construct a functional for widespread PDEs, the functionals relating to the rotations, first strain invariant and distortion are constructed with arbitrary integer order spatial derivative or integral, and the conservation laws follow. This kind of non-classical conservation laws does not come from the Lagrangian density of an elastic body and belongs to the deep-level natures of symmetries of elastic field derived by standard techniques. Availability is shown by two examples, from which the field intensity of a vertical load applied to the surface of an elastic half-space and the path-independent integrals in a coordinate system moving with Galilean transformation are presented for comparison.  相似文献   

10.
In this paper, we consider nonlinear multidimensional Cahn–Hilliard and Kuramoto–Sivashinsky equations that have many important applications in physics and chemistry, and a certain natural generalization of these two equations to which we refer to as the generalized Cahn–Hilliard–Kuramoto–Sivashinsky equation. For an arbitrary number of spatial independent variables, we present a complete list of cases when the latter equation admits nontrivial local conservation laws of any order, and for each of those cases, we give an explicit form of all the local conservation laws of all orders modulo trivial ones admitted by the equation under study. In particular, we show that the original Kuramoto–Sivashinsky equation admits no nontrivial local conservation laws, and find all nontrivial local conservation laws for the Cahn–Hilliard equation.  相似文献   

11.
We determine all the nontrivial conservation laws for soil water redistribution and extraction flow equations which are modelled by a class of (2+1) nonlinear evolution partial differential equations with three arbitrary elements. It is shown that for arbitrary elements in the model equation there exist trivial conservation laws. We point out that nontrivial conservation laws exist for certain classes of equations which admit point symmetries.  相似文献   

12.
An alternative method to construct a class of conservation laws of the KdV equation based on the classical Appell’s lemma and the trace formulas of Deift-Trubowitz type is studied. A new type of infinite sequence of conservation laws whose local densities cannot be expressed in terms of differential polynomials is constructed.  相似文献   

13.
In this paper we consider a class of evolution equations up to fifth-order containing many arbitrary smooth functions from the point of view of nonlinear self-adjointness. The studied class includes many important equations modeling different phenomena. In particular, some of the considered equations were studied previously by other researchers from the point of view of quasi self-adjointness or strictly self-adjointness. Therefore we find new local conservation laws for these equations invoking the obtained results on nonlinearly self-adjointness and the conservation theorem proposed by Nail Ibragimov.  相似文献   

14.
Conservation Laws and Potential Symmetries of Linear Parabolic Equations   总被引:1,自引:0,他引:1  
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformations, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are described completely. They are in fact exhausted by local conservation laws. For any equation from the above class the characteristic space of local conservation laws is isomorphic to the solution set of the adjoint equation. Effective criteria for the existence of potential symmetries are proposed. Their proofs involve a rather intricate interplay between different representations of potential systems, the notion of a potential equation associated with a tuple of characteristics, prolongation of the equivalence group to the whole potential frame and application of multiple dual Darboux transformations. Based on the tools developed, a preliminary analysis of generalized potential symmetries is carried out and then applied to substantiate our construction of potential systems. The simplest potential symmetries of the linear heat equation, which are associated with single conservation laws, are classified with respect to its point symmetry group. Equations possessing infinite series of potential symmetry algebras are studied in detail.  相似文献   

15.
The shallow-water equations for two-layer inviscid flow with a free surface overlying a rigid horizontal bottom subject to gravitational forcing only are examined to determine the possible forms of conservation laws that the equations permit. In the case of a single layer with flow in only one horizontal direction, it is known that there are an infinite number of associated equations in conservation form, where the conserved quantity is a multinomial in the layer variables. The method used to determine this result is generalized to show that in the two-layer case, the result does not generalize, and it is discovered that only a finite number of conservation equations exist when the density difference between the layers is nonzero. The subsequent conservation equations are given explicitly, and a systematic method for deriving conservation laws from an arbitrary first-order system is described. For the case when the flow is in both horizontal dimensions, the method of analysis is straightforward in the one-layer case, and the finite number of conservation equations are derived. The two-layer case is similar, and the finite number of generalized conserved quantities are stated, although the question of whether or not there are only a finite number is posed as an open question.  相似文献   

16.
We prove the global well-posedness of the KP-I equation in for data of arbitrary size in a suitable Sobolev class. We use a compactness method to get local solutions. We extend the solutions thanks to some conservation laws, an almost conserved quantity and Strichartz estimates. Received: 5 April 2001 / Revised version: 22 October 2001 / Published online: 17 June 2002  相似文献   

17.
18.
We establish effective mean-value estimates for a wide class of multiplicative arithmetic functions, thereby providing (essentially optimal) quantitative versions of Wirsing’s classical estimates and extending those of Halász. Several applications are derived, including estimates for the difference of mean-values of so-called pretentious functions, local laws for the distribution of prime factors in an arbitrary set, and weighted distribution of additive functions.  相似文献   

19.
We determine conservation laws of the generalized KdV equation of time dependent variable coefficients of the linear damping and dispersion. The underlying equation is not derivable from a variational principle and hence one cannot use Noether’s theorem here to construct conservation laws as there is no Lagrangian. However, we show that by utilizing the new conservation theorem and the partial Lagrangian approach one can construct a number of local and nonlocal conservation laws for the underlying equation.  相似文献   

20.
In this paper the general magma equation modelling a melt flow in the Earth’s mantle is discussed. Applying the new theorem on nonlocal conservation laws [Ibragimov NH. A new conservation theorem. J Math Anal Appl 2007;333(1):311–28] and using the symmetries of the model equation nonlocal conservation laws are computed. In accordance with Ibragimov [Ibragimov NH. Quasi-self-adjoint differential equations. Preprint in Archives of ALGA, vol. 4, BTH, Karlskrona, Sweden: Alga Publications; 2007. p. 55–60, ISSN: 1652-4934] it is shown that the general magma equation is quasi-self-adjoint for arbitrary m and n and self-adjoint for n = ?m. These important properties are used for deriving local conservation laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号