首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
We consider the minmax regret (robust) version of the problem of scheduling n jobs on a machine to minimize the total flow time, where the processing times of the jobs are uncertain and can take on any values from the corresponding intervals of uncertainty. We prove that the problem in NP-hard. For the case where all intervals of uncertainty have the same center, we show that the problem can be solved in O(nlogn) time if the number of jobs is even, and is NP-hard if the number of jobs is odd. We study structural properties of the problem and discuss some polynomially solvable cases.  相似文献   

2.
We consider two linear project time–cost tradeoff problems with multiple milestones. Unless a milestone is completed on time, penalty costs for tardiness may be imposed. However, these penalty costs can be avoided by compressing the processing times of certain jobs that require additional resources or costs. Our model describes these penalty costs as the total weighted number of tardy milestone. The first problem tries to minimize the total weighted number of tardy milestones within the budget for total compression costs, while the second problem tries to minimize the total weighted number of tardy milestones plus total compression costs. We develop a linear programming formulation for the case with a fixed number of milestones. For the case with an arbitrary number of milestones, we show that under completely ordered jobs, the first problem is NP-hard in the ordinary sense while the second problem is polynomially solvable.  相似文献   

3.
In this paper, we consider a new edge colouring problem motivated by wireless mesh networks optimization: the proportional edge colouring problem. Given a graph G with positive weights associated to its edges, we want to find a proper edge colouring which assigns to each edge at least a proportion (given by its weight) of all the colours. If such colouring exists, we want to find one using the minimum number of colours. We proved that deciding if a weighted graph admits a proportional edge colouring is polynomial while determining its proportional edge chromatic number is NP-hard. We also give a lower and an upper bound that can be polynomially computed. We finally characterize some graphs and weighted graphs for which we can determine the proportional edge chromatic number.  相似文献   

4.
Parallel machine scheduling problems with a single server   总被引:3,自引:0,他引:3  
In this paper, we consider the problem of scheduling jobs on parallel machines with setup times. The setup has to be performed by a single server. The objective is to minimize the schedule length (makespan), as well as the forced idle time. The makespan problem is known to be NP-hard even for the case of two identical parallel machines. This paper presents a pseudopolynomial algorithm for the case of two machines when all setup times are equal to one. We also show that the more general problem with an arbitrary number of machines is unary NP-hard and analyze some list scheduling heuristics for this problem. The problem of minimizing the forced idle time is known to be unary NP-hard for the case of two machines and arbitrary setup and processing times. We prove unary NP-hardness of this problem even for the case of constant setup times. Moreover, some polynomially solvable cases are given.  相似文献   

5.

Let K denote a compact subset of the complex plane . We present correct proof that the stable rank of A(K) is one. Hereby, A (K) is the algebra of all continuous functions on K which are analytic in the interior of K.

Let G denote a plane domain whose boundary consists of finitely many closed, nonintersecting Jordan curves. We show that for a fixed function of gεC( ), g≠0, the following assertions are equivalent:

Every unimodular element (f, g) is reducible to the principal component exp(C( )).

The zero set Zg is polynomially convex, i.e., its complement Zg is connected.

Author Keywords: Bass' stable rank; reducible; unimodular; 1-stable; boundary principle  相似文献   


6.
A due-date assignment problem with learning effect and deteriorating jobs   总被引:1,自引:0,他引:1  
In this paper we consider a single-machine scheduling problem with the effects of learning and deterioration. In this model, job processing times are defined by functions of their starting times and positions in the sequence. The problem is to determine an optimal combination of the due-date and schedule so as to minimize the sum of earliness, tardiness and due-date. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

7.
In many realistic scheduling settings a job processed later consumes more time than when it is processed earlier – this phenomenon is known as scheduling with deteriorating jobs. In the literature on deteriorating job scheduling problems, majority of the research assumed that the actual job processing time of a job is a function of its starting time. In this paper we consider a new deterioration model where the actual job processing time of a job is a function of the processing times of the jobs already processed. We show that the single-machine scheduling problems to minimize the makespan and total completion time remain polynomially solvable under the proposed model. In addition, we prove that the problems to minimize the total weighted completion time, maximum lateness, and maximum tardiness are polynomially solvable under certain agreeable conditions.  相似文献   

8.
In this paper we discuss a minmax regret version of the single-machine scheduling problem with the total flow time criterion. Uncertain processing times are modeled by closed intervals. We show that if the deterministic problem is polynomially solvable, then its minmax regret version is approximable within 2.  相似文献   

9.
We consider two single machine scheduling problems with resource dependent release times and processing times, in which the release times and processing times are linearly decreasing functions of the amount of resources consumed. The objective is to minimize the total cost of makespan and resource consumption function that is composed of release time reduction and processing time reduction. In the first problem, the cost of reducing a unit release time for each job is common. We show that the problem can be solved in polynomial time. The second problem assumes different reduction costs of job release times. We show that the problem can be reduced polynomially from the partition problem and thus, is NP-complete.  相似文献   

10.
We consider a single-machine scheduling problem with linear decreasing deterioration in which the due dates are determined by the equal slack (SLK) method. By the linear decreasing deterioration, we mean that the job’s processing time is a decreasing function of its starting time. The objective is to minimize the total weighted earliness penalty subject to no tardy jobs. We prove that two special cases of the problem remain polynomially solvable. The first case is the problem with equally weighted monotonous penalty objective function and the other case is the problem with weighted linear penalty objective function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号