首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
We discuss how one can use certain filters from signal processing to describe isomorphisms between certain projective C(T n )-modules. Conversely, we show how cancellation properties for finitely generated projective modules over C(T n ) can often be used to prove the existence of continuous high pass filters, of the kind needed for multivariate wavelets, corresponding to a given continuous low-pass filter. However, we also give an example of a continuous low-pass filter for which it is impossible to find corresponding continuous high-pass filters. In this way we give another approach to the solution of the matrix completion problem for filters of the kind arising in wavelet theory.  相似文献   

2.
Factoring wavelet transforms into lifting steps   总被引:236,自引:0,他引:236  
This article is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is well-known to algebraists (and expressed by the formulaSL(n;R[z, z−1])=E(n;R[z, z−1])); it is also used in linear systems theory in the electrical engineering community. We present here a self-contained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e., non-unitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a wavelet-like transform that maps integers to integers. Research Tutorial Acknowledgements and Notes. Page 264.  相似文献   

3.
In this paper we study the algebraic structure of the space of compactly supported orthonormal wavelets over real numbers. Based on the parameterization of wavelet space, one can define a parameter mapping from the wavelet space of rank 2 (or 2-band, scale factor of 2) and genus gto the (g−1) dimensional real torus (the products of unit circles). By the uniqueness and exactness of factorization, this mapping is well defined and one-to-one. Thus we can equip the rank 2 orthogonal wavelet space with an algebraic structure of the torus. Because of the degenerate phenomenon of the paraunitary matrix, the parameterization map is not onto. However, there exists an onto mapping from the torus to the closure of the wavelet space. And with such mapping, a more complete parameterization is obtained. By utilizing the factorization theory, we present a fast implementation of discrete wavelet transform (DWT). In general, the computational complexity of a rank morthogonal DWT is O(m2g). In this paper we start with a given scaling filter and construct additional (m−1) wavelet filters so that the DWT can be implemented in O(mg). With a fixed scaling filter, the approximation order, the orthogonality, and the smoothness remain unchanged; thus our fast DWT implementation is quite general.  相似文献   

4.
We define a continuous Gabor transform for strong hypergroups and prove a Plancherel formula, an L 2 inversion formula and an uncertainty principle for it. As an example, we show how these techniques apply to the Bessel–Kingman hypergroups and to the dual Jacobi polynomial hypergroups. These examples have an interpretation in the setting of radial functions on R d and zonal functions on compact two-point homogeneous spaces, where they provide a new transform which possesses many properties of the classical Gabor transform.  相似文献   

5.
We shall prove some simultaneous localization or concentration inequalities for the continuous wavelet transform. We will also show that simultaneous localization in the scale-time(space) is impossible, in the sense that the scale sections of the support of wavelet transform of a nonnull Lp-function can not have finite Lebesgue measure. Finally, some properties of the support of continuous wavelet transform of band-limited functions are studied.  相似文献   

6.
A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton's result on wavelet tight frames inL2( ) is generalized to then-dimensional case. Two ways of constructing certain dual wavelet tight frames inL2( n) are suggested. Finally, examples of smooth wavelet tight frames inL2( ) andH2( ) are provided. In particular, an example is given to demonstrate that there is a function ψ whose Fourier transform is positive, compactly supported, and infinitely differentiable which generates a non-MRA wavelet tight frame inH2( ).  相似文献   

7.
We study biorthogonal bases of compactly supported wavelets constructed from box splines in ℝ N with any integer dilation factor. For a suitable class of box splines we write explicitly dual low-pass filters of arbitrarily high regularity and indicate how to construct the corresponding high-pass filters (primal and dual). Received: August 23, 2000; in final form: March 10, 2001?Published online: May 29, 2002  相似文献   

8.
We demonstrate that the Plancherel transform for Type-I groups provides one with a natural, unified perspective for the generalized continuous wavelet transform, on the one hand, and for a class of Wigner functions, on the other. We first prove that a Plancherel inversion formula, well known for Bruhat functions on the group, holds for a much larger class of functions. This result allows us to view the wavelet transform as essentially the inverse Plancherel transform. The wavelet transform of a signal is an L2-function on an appropriately chosen group while the Wigner function is defined on a coadjoint orbit of the group and serves as an alternative characterization of the signal, which is often used in practical applications. The Plancherel transform maps L2-functions on a group unitarily to fields of Hilbert-Schmidt operators, indexed by unitary irreducible representations of the group. The wavelet transform can essentially be looked upon as a restricted inverse Plancherel transform, while Wigner functions are modified Fourier transforms of inverse Plancherel transforms, usually restricted to a subset of the unitary dual of the group. Some known results on both Wigner functions and wavelet transforms, appearing in the literature from very different perspectives, are naturally unified within our approach. Explicit computations on a number of groups illustrate the theory. Communicated by Gian Michele Graf submitted 05/06/01, accepted: 19/09/02  相似文献   

9.
The paper is concerned with a construction of new spline-wavelet bases on the interval. The resulting bases generate multiresolution analyses on the unit interval with the desired number of vanishing wavelet moments for primal and dual wavelets. Both primal and dual wavelets have compact support. Inner wavelets are translated and dilated versions of well-known wavelets designed by Cohen, Daubechies, and Feauveau. Our objective is to construct interval spline-wavelet bases with the condition number which is close to the condition number of the spline wavelet bases on the real line, especially in the case of the cubic spline wavelets. We show that the constructed set of functions is indeed a Riesz basis for the space L 2 ([0, 1]) and for the Sobolev space H s ([0, 1]) for a certain range of s. Then we adapt the primal bases to the homogeneous Dirichlet boundary conditions of the first order and the dual bases to the complementary boundary conditions. Quantitative properties of the constructed bases are presented. Finally, we compare the efficiency of an adaptive wavelet scheme for several spline-wavelet bases and we show a superiority of our construction. Numerical examples are presented for the one-dimensional and two-dimensional Poisson equations where the solution has steep gradients.  相似文献   

10.
The topic of this article is a generalization of the theory of coorbit spaces and related frame constructions to Banach spaces of functions or distributions over domains and manifolds. As a special case one obtains modulation spaces and Gabor frames on spheres. Group theoretical considerations allow first to introduce generalized wavelet transforms. These are then used to define coorbit spaces on homogeneous spaces, which consist of functions having their generalized wavelet transform in some weighted Lp space. We also describe natural ways of discretizing those wavelet transforms, or equivalently to obtain atomic decompositions and Banach frames for the corresponding coorbit spaces. Based on these facts we treat aspects of nonlinear approximation and show how the new theory can be applied to the Gabor transform on spheres. For the S1 we exhibit concrete examples of admissible Gabor atoms which are very closely related to uncertainty minimizing states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号