首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we show mainly two results about uniformly closed Riesz subspaces of ?X containing the constant functions. First, for such a Riesz subspace E, we solve the problem of determining the properties that a real continuous functiondefined on a proper open interval of ?should have in order that the conditions “E is closed under composition with ” and “E is closed under inversion in X” become equivalent. The second result, reformulated in the more general frame of the Archimedean Riesz spaces with weak order unit e, establishes that E (e-uniformly complete and e-semisimple) is closed under inversion in C(Spec E) if and only if E is 2-universally e-complete.  相似文献   

2.
In this paper, a characterization is given for compact door spaces. We, also, deal with spaces X such that a compactification K(X) of X is submaximal or door.Let X be a topological space and K(X) be a compactification of X.We prove, here, that K(X) is submaximal if and only if for each dense subset D of X, the following properties hold:
(i)
D is co-finite in K(X);
(ii)
for each xK(X)?D, {x} is closed.
If X is a noncompact space, then we show that K(X) is a door space if and only if X is a discrete space and K(X) is the one-point compactification of X.  相似文献   

3.
Results of Henriksen and Johnson, for archimedean f-rings with identity, and of Aron and Hager, for archimedean ?-groups with unit, relating uniform completeness to order-convexity of a representation in a D(X) (the lattice of almost real continuous functions on the space X) are extended to situations without identity or unit. For an archimedean ?-group, G, we show: if G admits any representation G?D(X) in which G is order-convex, then G is divisible and relatively uniformly complete. A converse to this would seem to require some sort of canonical representation of G, which seems not to exist in the ?-group case. But for a reduced archimedean f-ring, A, there is the Johnson representation A?D(XA), and we show: A is divisible, relatively uniformly complete and square-dominated if and only if A is order-convex in D(XA) and square-root-closed. Also, we expand on the situation with unit, where we have the Yosida representation, G?D(YG): if G is divisible, relatively uniformly complete, and the unit is a near unit, then G is order-convex in D(YG).  相似文献   

4.
In cone uniform spaces X, using the concept of the D-family of cone pseudodistances, the distance between two not necessarily convex or compact sets A and B in X is defined, the concepts of cyclic and noncyclic set-valued dynamic systems of D-relatively quasi-asymptotic contractions T:AB→2AB are introduced and the best approximation and best proximity point theorems for such contractions are proved. Also conditions are given which guarantee that for each starting point each generalized sequence of iterations of these contractions (in particular, each dynamic process) converges and the limit is a best proximity point. Moreover, D-families are constructed, characterized and compared. The results are new for set-valued and single-valued dynamic systems in cone uniform, cone locally convex and cone metric spaces. Various examples illustrating ideas, methods, definitions and results are constructed.  相似文献   

5.
Let X be a metric space and let ANR(X) denote the hyperspace of all compact ANR's in X. This paper introduces a notion of a strongly e-movable convergence for sequences in ANR(X) and proves several characterizations of strongly e-movable convergence. For a (complete) separable metric space X we show that ANR(X) with the topology induced by strongly e-movable convergence can be metrized as a (complete) separable metric space. Moreover, if X is a finite-dimensional compactum, then strongly e-movable convergence induces on ANR(X) the same topology as that induced by Borsuk's homotopy metric.For a separable Q-manifold M, ANR(M) is locally arcwise connected and A, B ? ANR(M) can be joined by an arc in ANR(M) iff there is a simple homotopy equivalence ?: AB homotopic to the inclusion of A into M.  相似文献   

6.
Let X be a Peano continuum, C(X) its space of subcontinua, and C(X, ε) the space of subcontinua of diameter less than ε. A selection on some subspace of C(X) is a continuous choice function; the selection σ is rigid if σ(A) ? B ? A implies σ(A) = σ(B). It is shown that X is a local dendrite (contains at most one simple closed curve) if and only if there exists ε > 0 such that C(X, ε) admits a selection (rigid selection). Further, C(X) admits a local selection at the subcontinuum A if and only if A has a neighborhood (relative to the space C(X)) which contains no cyclic local dendrite; moreover, that local selection may be chosen to be a constant.  相似文献   

7.
《Quaestiones Mathematicae》2013,36(7):919-937
Abstract

Pre-Riesz spaces are ordered vector spaces which can be order densely embedded into vector lattices, their so-called vector lattice covers. Given a vector lattice cover Y for a pre-Riesz space X, we address the question how to find vector lattice covers for subspaces of X, such as ideals and bands. We provide conditions such that for a directed ideal I in X its smallest extension ideal in Y is a vector lattice cover. We show a criterion for bands in X and their extension bands in Y as well. Moreover, we state properties of ideals and bands in X which are generated by sets, and of their extensions in Y.  相似文献   

8.
Let A+B be the pointwise (Minkowski) sum of two convex subsets A and B of a Banach space. Is it true that every continuous mapping h:XA+B splits into a sum h=f+g of continuous mappings f:XA and g:XB? We study this question within a wider framework of splitting techniques of continuous selections. Existence of splittings is guaranteed by hereditary invertibility of linear surjections between Banach spaces. Some affirmative and negative results on such invertibility with respect to an appropriate class of convex compacta are presented. As a corollary, a positive answer to the above question is obtained for strictly convex finite-dimensional precompact spaces.  相似文献   

9.
Following Pareek a topological space X is called D-paracompact if for every open cover A of X there exists a continuous mapping f from X onto a developable T1-space Y and an open cover B of Y such that { f-1[B]|BB } refines A. It is shown that a space is D-paracompact if and only if it is subparacompact and D-expandable. Moreover, it is proved that D-paracompactness coincides with a covering property, called dissectability, which was introduced by the author in order to obtain a base characterization of developable spaces.  相似文献   

10.
Let Cp(X) be the space of all continuous real-valued functions on a space X, with the topology of pointwise convergence. In this paper we show that Cp(X) is not domain representable unless X is discrete for a class of spaces that includes all pseudo-radial spaces and all generalized ordered spaces. This is a first step toward our conjecture that if X is completely regular, then Cp(X) is domain representable if and only if X is discrete. In addition, we show that if X is completely regular and pseudonormal, then in the function space Cp(X), Oxtoby's pseudocompleteness, strong Choquet completeness, and weak Choquet completeness are all equivalent to the statement “every countable subset of X is closed”.  相似文献   

11.
We introduce the notion of a convex geometry extending the notion of a finite closure system with the anti-exchange property known in combinatorics. This notion becomes essential for the different embedding results in the class of join-semidistributive lattices. In particular, we prove that every finite join-semidistributive lattice can be embedded into a lattice SP(A) of algebraic subsets of a suitable algebraic lattice A. This latter construction, SP(A), is a key example of a convex geometry that plays an analogous role in hierarchy of join-semidistributive lattices as a lattice of equivalence relations does in the class of modular lattices. We give numerous examples of convex geometries that emerge in different branches of mathematics from geometry to graph theory. We also discuss the introduced notion of a strong convex geometry that might promise the development of rich structural theory of convex geometries.  相似文献   

12.
13.
It is shown that the space Cp(τω) is a D-space for any ordinal number τ, where . This conclusion gives a positive answer to R.Z. Buzyakova's question. We also prove that another special example of Lindelöf space is a D-space. We discuss the D-property of spaces with point-countable weak bases. We prove that if a space X has a point-countable weak base, then X is a D-space. By this conclusion and one of T. Hoshina's conclusion, we have that if X is a countably compact space with a point-countable weak base, then X is a compact metrizable space. In the last part, we show that if a space X is a finite union of θ-refinable spaces, then X is a αD-space.  相似文献   

14.
A space is defined to be suborderable if it is embeddable in a (totally) orderable space. The length of a scattered space X is the least ordinal a such that X(a), the ath derived set of X, is empty. It is shown that a suborderable scattered space of countable length is hereditarily paracompact, orderable, and admits an orderable scattered compactification.  相似文献   

15.
The paper presents one of the ways to construct all the locally compact extensions of a given Tychonoff space T. First, there proved the “local” variant of the Stone-C?ech theorem on “completely regular” Riesz spaces X(T) of continuous bounded functions on T with no unit function, in general, but with a collection of local units. In Theorem 1 it is proved that all the functions from X(T) can be “completely regularly” extended on the largest locally compact extension βxT. Theorem 3 states, that βxT are presenting, in fact, all the locally compact extensions of T.  相似文献   

16.
The category of bounded distributive lattices with order-preserving maps is shown to be dually equivalent to the category of Priestley spaces with Priestley multirelations. The Priestley dual space of the ideal lattice L of a bounded distributive lattice L is described in terms of the dual space of L. A variant of the Nachbin-Stone-ech compactification is developed for bitopological and ordered spaces. Let X be a poset and Y an ordered space; X Y denotes the poset of continuous order-preserving maps from Y to X with the discrete topology. The Priestley dual of L P is determined, where P is a poset and L a bounded distributive lattice.  相似文献   

17.
《Quaestiones Mathematicae》2013,36(8):1135-1167
Abstract

The c-realcompact spaces are fully studied and most of the important and well-known properties of realcompact spaces are extended to these spaces. For a zero-dimensional space X, the space υ0X, which is the counterpart of υX, the Hewitt realcompactification of X, is introduced and studied. It is shown that υ0X, which is the smallest c-realcompact space between X and β0X, plays the same role (with respect to Cc(X)) as υX does in the context of C(X). It is proved for strongly zero-dimensional spaces, c-realcompact spaces, realcompact spaces and N-compact spaces coincide. In particular, if X is a strongly zero-dimensional space, then υX = υ0X. It is obsesrved that a zero-dimensional space X is pseudocompact if and only if Cc(X) = C*c(X), or equivalently if and only if υ0X = β0 X. In particular, a zero-dimensional pseudocompact space is compact if and only if it is c-realcompact. It is shown that Lindelöf spaces, subspaces of the one-point compactification (resp., Lindelöffication) of a discrete space with a nonmeasurable cardinal, are c-realcompact space. If X is a pseudocompact space, it is observed that C(X) = Cc(X) if and only if βX is scattered. Finally, the simplest possible proof (with reasoning) among the known proofs, of the well-known fact that discrete spaces of cardinality less than or equal to that of the continuum are realcompact, is given.  相似文献   

18.
Let X be a completely regular Hausdorff space and let H be a subset of C1(X) which separates points and closed sets. By embedding X into a cube whose factors are indexed by H, a Hausdorff compactification eHX of X is obtained. Given two subsets F and G of C1(X) which separate points from closed sets, in the present paper we obtain a necessary and sufficient condition for the equivalence of eFX and eGX. The condition is expressed in terms of the space X and the sets F and G alone, herewith solving a question raised by Chandler.  相似文献   

19.
The present paper considers the existence of continuous roots of algebraic equations with coefficients being continuous functions defined on compact Hausdorff spaces. For a compact Hausdorff space X, C(X) denotes the Banach algebra of all continuous complex-valued functions on X with the sup norm ∥⋅. The algebra C(X) is said to be algebraically closed if each monic algebraic equation with C(X) coefficients has a root in C(X). First we study a topological characterization of a first-countable compact (connected) Hausdorff space X such that C(X) is algebraically closed. The result has been obtained by Countryman Jr, Hatori-Miura and Miura-Niijima and we provide a simple proof for metrizable spaces.Also we consider continuous approximate roots of the equation znf=0 with respect to z, where fC(X), and provide a topological characterization of compact Hausdorff space X with dimX?1 such that the above equation has an approximate root in C(X) for each fC(X), in terms of the first ?ech cohomology of X.  相似文献   

20.
We prove that if X and Y are compact Hausdorff spaces, then every fC(X × Y)+, i.e. f(x, y) ≥ 0 for all (x, y) ∈ X × Y, can be approximated uniformly from below and above by elements of the form , where fiC(X)+ and giC(Y)+ for i = 1, 2, …, n. The proof uses only elementary topology. We use this result, in conjuction with Kakutani's M-spaces representation theorem, to obtain an alternative proof for a known property of Fremlin's Riesz space tensor product of Archimedean Riesz spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号