首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-dimensional free surface problem is considered. It consists in Burgers’ equation with an additional diffusion term on a moving interval. The well-posedness of the problem is investigated and existence and uniqueness results are obtained locally in time. A semi-discretization in space with a piecewise linear finite element method is considered. A priori and a posteriori error estimates are given for the semi-discretization in space. A time splitting scheme allows to obtain numerical results in agreement with the theoretical investigations.Supported by the Swiss National Science Foundation  相似文献   

2.
This paper is concerned with the numerical solution of the Cauchy problem for the Benjamin-Ono equationu t +uu x −Hu xx =0, whereH denotes the Hilbert transform. Our numerical method first approximates this Cauchy problem by an initial-value problem for a corresponding 2L-periodic problem in the spatial variable, withL large. This periodic problem is then solved using the Crank-Nicolson approximation in time and finite difference approximations in space, treating the nonlinear term in a standard conservative fashion, and the Hilbert transform by a quadrature formula which may be computed efficiently using the Fast Fourier Transform.  相似文献   

3.
This paper deals with numerical methods for the solution of linear initial value problems. Two main theorems are presented on the stability of these methods. Both theorems give conditions guaranteeing a mild error growth, for one-step methods characterized by a rational function ϕ(z). The conditions are related to the stability regionS={z:z∈ℂ with |ϕ(z)|≤1}, and can be viewed as variants to the resolvent condition occurring in the reputed Kreiss matrix theorem. Stability estimates are presented in terms of the number of time stepsn and the dimensions of the space. The first theorem gives a stability estimate which implies that errors in the numerical process cannot grow faster than linearly withs orn. It improves previous results in the literature where various restrictions were imposed onS and ϕ(z), including ϕ′(z)≠0 forz∈σS andS be bounded. The new theorem is not subject to any of these restrictions. The second theorem gives a sharper stability result under additional assumptions regarding the differential equation. This result implies that errors cannot grow faster thann β, with fixed β<1. The theory is illustrated in the numerical solution of an initial-boundary value problem for a partial differential equation, where the error growth is measured in the maximum norm.  相似文献   

4.
《Quaestiones Mathematicae》2013,36(1-2):275-289
Abstract

Numerical solution of the wave equation in the form of close lower and upper bounds provides a secure a posteriori error estimate that can be used for efficient accuracy control. The method considered in this paper uses some monotone properties of the differential operator in the wave equation to construct bounds for the solution in the form of trigonometric polynomials of x. Aspects of the numerical implementation, the accuracy of the computed bounds and some numerical examples are discussed.  相似文献   

5.
We deal with the numerical solution of a scalar nonstationary nonlinear convection–diffusion equation. We employ a combination of the discontinuous Galerkin finite element method for the space semi-discretization and the k-step backward difference formula for the time discretization. The diffusive and stabilization terms are treated implicitly whereas the nonlinear convective term is treated by a higher order explicit extrapolation method, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the discrete L (L 2)-norm and the L 2(H 1)-seminorm with respect to the mesh size h and time step τ for k = 2,3. Numerical examples verifying the theoretical results are presented. This work is a part of the research project MSM 0021620839 financed by the Ministry of Education of the Czech Republic and was partly supported by the Grant No. 316/2006/B-MAT/MFF of the Grant Agency of the Charles University Prague. The research of M. Vlasák was supported by the project LC06052 of the Ministry of Education of the Czech Republic (Jindřich Nečas Center for Mathematical Modelling).  相似文献   

6.
In this paper, we propose a new method to compute the numerical flux of a finite volume scheme, used for the approximation of the solution of the nonlinear partial differential equation ut+div(qf(u))−ΔΦ(u)=0 in a 1D, 2D or 3D domain. The function Φ is supposed to be strictly increasing, but some values s such that Φ′(s)=0 can exist. The method is based on the solution, at each interface between two control volumes, of the nonlinear elliptic two point boundary value problem (qf(υ)+(Φ(υ))′)′=0 with Dirichlet boundary conditions given by the values of the discrete approximation in both control volumes. We prove the existence of a solution to this two point boundary value problem. We show that the expression for the numerical flux can be yielded without referring to this solution. Furthermore, we prove that the so designed finite volume scheme has the expected stability properties and that its solution converges to the weak solution of the continuous problem. Numerical results show the increase of accuracy due to the use of this scheme, compared to some other schemes.  相似文献   

7.
We study the convergence of a finite volume scheme for the linear advection equation with a Lipschitz divergence-free speed in R d . We prove a h 1/2-error estimate in the L (0,t;L 1)-norm for BV data. This result was expected from numerical experiments and is optimal.  相似文献   

8.
Summary. We derive a residual-based a posteriori error estimator for a stabilized finite element discretization of certain incompressible Oseen-like equations. We focus our attention on the behaviour of the effectivity index and we carry on a numerical study of its sensitiveness to the problem and mesh parameters. We also consider a scalar reaction-convection-diffusion problem and a divergence-free projection problem in order to investigate the effects on the robustness of our a posteriori error estimator of the reaction-convection-diffusion phenomena and, separately, of the incompressibility constraint. Received March 21, 2001 / Revised version received July 30, 2001 / Published online October 17, 2001  相似文献   

9.
In this paper, we present a finite difference scheme for the solution of an initial-boundary value problem of the Schrödinger-Boussinesq equation. The scheme is fully implicit and conserves two invariable quantities of the system. We investigate the existence of the solution for the scheme, give computational process for the numerical solution and prove convergence of iteration method by which a nonlinear algebra system for unknown Vn+1 is solved. On the basis of a priori estimates for a numerical solution, the uniqueness, convergence and stability for the difference solution is discussed. Numerical experiments verify the accuracy of our method.  相似文献   

10.
Summary For the numerical solution of inverse Helmholtz problems the boundary value problem for a Helmholtz equation with spatially variable wave number has to be solved repeatedly. For large wave numbers this is a challenge. In the paper we reformulate the inverse problem as an initial value problem, and describe a marching scheme for the numerical computation that needs only n2 log n operations on an n × n grid. We derive stability and error estimates for the marching scheme. We show that the marching solution is close to the low-pass filtered true solution. We present numerical examples that demonstrate the efficacy of the marching scheme.  相似文献   

11.
A spectral element method for solving parabolic initial boundary value problems on smooth domains using parallel computers is presented in this paper. The space domain is divided into a number of shape regular quadrilaterals of size h and the time step k   is proportional to h2h2. At each time step we minimize a functional which is the sum of the squares of the residuals in the partial differential equation, initial condition and boundary condition in different Sobolev norms and a term which measures the jump in the function and its derivatives across inter-element boundaries in certain Sobolev norms. The Sobolev spaces used are of different orders in space and time. We can define a preconditioner for the minimization problem which allows the problem to decouple. Error estimates are obtained for both the h and p versions of this method.  相似文献   

12.
We analyze the numerical approximation of a class of elliptic problems which depend on a small parameter . We give a generalization to the nonconforming case of a recent result established by Chenais and Paumier for a conforming discretization. For both the situations where numerical integration is used or not, a uniform convergence in and h is proved, numerical locking being thus avoided. Important tools in the proof of such a result are compactness properties for nonconforming spaces as well as the passage to the limit problem. Received October 7, 1997  相似文献   

13.
In this paper we consider a hyperbolic equation, with a memory term in time, which can be seen as a singular perturbation of the heat equation with memory. The qualitative properties of the solutions of the initial boundary value problems associated with both equations are studied. We propose numerical methods for the hyperbolic and parabolic models and their stability properties are analyzed. Finally, we include numerical experiments illustrating the performance of those methods.  相似文献   

14.
The Vlasov–Fokker–Planck equation is a model for a collisional, electrostatic plasma. The approximation of this equation in one spatial dimension is studied. The equation under consideration is linear in that the electric field is given as a known function that is not internally consistent with the phase space distribution function. The approximation method applied is the deterministic particle method described in Wollman and Ozizmir [Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in one dimension, J. Comput. Phys. 202 (2005) 602–644]. For the present linear problem an analysis of the stability and convergence of the numerical method is carried out. In addition, computations are done that verify the convergence of the numerical solution. It is also shown that the long term asymptotics of the computed solution is in agreement with the steady state solution derived in Bouchut and Dolbeault [On long time asymptotics of the Vlasov–Fokker–Planck equation and of the Vlasov–Poisson–Fokker–Planck system with coulombic and Newtonian potentials, Differential Integral Equations 8(3) (1995) 487–514].  相似文献   

15.
Summary. In this paper, we study finite volume schemes for the nonhomogeneous scalar conservation law with initial condition . The source term may be either stiff or nonstiff. In both cases, we prove error estimates between the approximate solution given by a finite volume scheme (the scheme is totally explicit in the nonstiff case, semi-implicit in the stiff case) and the entropy solution. The order of these estimates is in space-time -norm (h denotes the size of the mesh). Furthermore, the error estimate does not depend on the stiffness of the source term in the stiff case. Received October 21, 1999 / Published online February 5, 2001  相似文献   

16.
Summary In the paper we consider a singularly perturbed linear parabolic initialboundary value problem in one space variable. Two exponential fitted schemes are derived for the problem using Petrov-Galerkin finite element methods with various choices of trial and test spaces. On rectangular meshes which are either arbitrary or slightly restricted, we derive global energy norm andL 2 norm and localL error bounds which are uniform in the diffusion parameter. Numerical results are also persented.  相似文献   

17.
Summary. One approximates the entropy weak solution u of a nonlinear parabolic degenerate equation by a piecewise constant function using a discretization in space and time and a finite volume scheme. The convergence of to u is shown as the size of the space and time steps tend to zero. In a first step, estimates on are used to prove the convergence, up to a subsequence, of to a measure valued entropy solution (called here an entropy process solution). A result of uniqueness of the entropy process solution is proved, yielding the strong convergence of to{\it u}. Some on a model equation are shown. Received September 27, 2000 / Published online October 17, 2001  相似文献   

18.
An adaptive semi-Lagrangian scheme for solving the Cauchy problem associated to the periodic 1+1-dimensional Vlasov-Poisson system in the two- dimensional phase space is proposed and analyzed. A key feature of our method is the accurate evolution of the adaptive mesh from one time step to the next one, based on a rigorous analysis of the local regularity and how it gets transported by the numerical flow. The accuracy of the scheme is monitored by a prescribed tolerance parameter ε which represents the local interpolation error at each time step, in the L metric. The numerical solutions are proved to converge in L towards the exact ones as ε and Δt tend to zero provided the initial data is Lipschitz and has a finite total curvature, or in other words, that it belongs to . The rate of convergence is , which should be compared to the results of Besse who recently established in (SIAM J Numer Anal 42(1):350–382, 2004) similar rates for a uniform semi-Lagrangian scheme, but requiring that the initial data are in . Several numerical tests illustrate the effectiveness of our approach for generating the optimal adaptive discretizations.  相似文献   

19.
Summary By the so-called longitudinal method of lines the first boundary value problem for a parabolic differential equation is transformed into an initial value problem for a system of ordinary differential equations. In this paper, for a wide class of nonlinear parabolic differential equations the spatial derivatives occuring in the original problem are replaced by suitable differences such that monotonicity methods become applicable. A convergence theorem is proved. Special interest is devoted to the equationu t=f(x,t,u,u x,u xx), if the matrix of first order derivatives off(x,t,z,p,r) with respect tor may be estimated by a suitable Minkowski matrix.  相似文献   

20.
In this paper, we consider numerical approximations of a contact problem in rate-type viscoplasticity. The contact conditions are described in term of a subdifferential and include as special cases some classical frictionless boundary conditions. The contact problem consists of an evolution equation coupled with a time-dependent variational inequality. Error estimates for both spatially semi-discrete and fully discrete solutions are derived and some convergence results are shown. Under appropriate regularity assumptions on the exact solution, error estimates are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号