首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We consider a class of unconstrained nonsmooth convex optimization problems, in which the objective function is the sum of a convex smooth function on an open subset of matrices and a separable convex function on a set of matrices. This problem includes the covariance selection problem that can be expressed as an 1-penalized maximum likelihood estimation problem. In this paper, we propose a block coordinate gradient descent method (abbreviated as BCGD) for solving this class of nonsmooth separable problems with the coordinate block chosen by a Gauss-Seidel rule. The method is simple, highly parallelizable, and suited for large-scale problems. We establish global convergence and, under a local Lipschizian error bound assumption, linear rate of convergence for this method. For the covariance selection problem, the method can terminate in O(n3/e){O(n^3/\epsilon)} iterations with an e{\epsilon}-optimal solution. We compare the performance of the BCGD method with the first-order methods proposed by Lu (SIAM J Optim 19:1807–1827, 2009; SIAM J Matrix Anal Appl 31:2000–2016, 2010) for solving the covariance selection problem on randomly generated instances. Our numerical experience suggests that the BCGD method can be efficient for large-scale covariance selection problems with constraints.  相似文献   

2.
Given ann-vertex simple polygonP, the problem of computing the shortest weakly visible subedge ofPis that of finding a shortest line segmentson the boundary ofPsuch thatPis weakly visible froms(ifsexists). In this paper, we present new geometric observations that are useful for solving this problem. Based on these geometric observations, we obtain optimal sequential and parallel algorithms for solving this problem. Our sequential algorithm runs inO(n) time, and our parallel algorithm runs inO(log n) time usingO(n/log n) processors in the CREW PRAM computational model. Using the previously best known sequential algorithms to solve this problem would takeO(n2) time. We also give geometric observations that lead to extremely simple and optimal algorithms for solving, both sequentially and in parallel, the case of this problem where the polygons are rectilinear.  相似文献   

3.
Given a graph G = (V, E), the maximum leaf spanning tree problem (MLSTP) is to find a spanning tree of G with as many leaves as possible. The problem is easy to solve when G is complete. However, for the general case, when the graph is sparse, it is proven to be NP-hard. In this paper, two reformulations are proposed for the problem. The first one is a reinforced directed graph version of a formulation found in the literature. The second recasts the problem as a Steiner arborescence problem over an associated directed graph. Branch-and-Cut algorithms are implemented for these two reformulations. Additionally, we also implemented an improved version of a MLSTP Branch-and-Bound algorithm, suggested in the literature. All of these algorithms benefit from pre-processing tests and a heuristic suggested in this paper. Computational comparisons between the three algorithms indicate that the one associated with the first reformulation is the overall best. It was shown to be faster than the other two algorithms and is capable of solving much larger MLSTP instances than previously attempted in the literature.  相似文献   

4.
Average-optimal string matching   总被引:2,自引:0,他引:2  
The exact string matching problem is to find the occurrences of a pattern of length m from a text of length n symbols. We develop a novel and unorthodox filtering technique for this problem. Our method is based on transforming the problem into multiple matching of carefully chosen pattern subsequences. While this is seemingly more difficult than the original problem, we show that the idea leads to very simple algorithms that are optimal on average. We then show how our basic method can be used to solve multiple string matching as well as several approximate matching problems in average optimal time. The general method can be applied to many existing string matching algorithms. Our experimental results show that the algorithms perform very well in practice.  相似文献   

5.
IDR (s) is a family of fast algorithms for iteratively solving large nonsymmetric linear systems. With cluster computing and in particular with Grid computing, the inner product is a bottleneck operation. In this paper, three techniques are investigated for alleviating this bottleneck. First, a recently proposed IDR (s) algorithm that is highly efficient and stable is reformulated in such a way that it has a single global synchronization point per iteration step. Second, the so‐called test matrix is chosen so that the work, communication, and storage involving this matrix is minimized in multi‐cluster environments. Finally, a methodology is presented for a‐priori estimation of the optimal value of s using only problem and machine‐based parameters. Numerical experiments applied to a 3D convection–diffusion problem are performed on the DAS‐3 Grid computer, demonstrating the effectiveness of our approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing 1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated as CGD) to solve the more general 1-regularized convex minimization problems, i.e., the problem of minimizing an 1-regularized convex smooth function. We establish a Q-linear convergence rate for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We propose efficient implementations of the CGD method and report numerical results for solving large-scale 1-regularized linear least squares problems arising in compressed sensing and image deconvolution as well as large-scale 1-regularized logistic regression problems for feature selection in data classification. Comparison with several state-of-the-art algorithms specifically designed for solving large-scale 1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that the CGD method is not specifically designed just to solve these special classes of problems.  相似文献   

7.
This paper discusses algorithms of Moore, Skelboe, Ichida, Fujii and Hansen for solving the global unconstrained optimization problem. These algorithms have been tried on computers, but a thorough theoretical discussion of their convergence properties has been missing. The discussion was started in part I of this paper (Mathematical Programming 33 (1985) 300–317) where the convergence to the global minimum was studied. The present paper is concerned with the different behaviours of these algorithms when they are used for the determination of global minimum points. The solution sets of the algorithms can be a subset of the set of global minimum points,G, a superset ofG, or exactlyG. The algorithms are applicable to a very general class of functions: functions which are continuous, and have suitable inclusion functions. The number of global minimum points can be infinite.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

8.
Properties of the Boolean functions specified by the Zhegalkin polynomials in n variables of degree not greater than k are investigated from the viewpoint of placing their unit (zero) points on a unit cube. Properties of test sets for the Zhegalkin polynomials are considered, where the key role is played by the irredundant test sets. A deterministic algorithm for finding all the annihilators for a given polynomial is described including minimal-degree annihilators that have applications in cryptology. In the available algorithms for finding annihilators, the problem is reduced to solving systems of linear Boolean equations. Reducing the dimension of these systems decreases the algorithmic complexity of solving the problem. The proposed algorithm makes it possible to decrease the complexity of finding annihilators by reducing the dimension of such systems but it does not reduce the asymptotic complexity of solving systems of linear Boolean equations.  相似文献   

9.
We present an overlapping domain decomposition technique for solving the hypersingular integral equation on the sphere with spherical splines. We prove that the condition number of the additive Schwarz operator is bounded by O(H/δ), where H is the size of the coarse mesh and δ is the overlap size, which is chosen to be proportional to the size of the fine mesh. In the case that the degree of the splines is even, a better bound O(1 + log2(H/δ)) is proved. The method is illustrated by numerical experiments on different point sets including those taken from magsat satellite data.  相似文献   

10.
Path-closed sets     
Given a digraphG = (V, E), call a node setTV path-closed ifv, v′ εT andw εV is on a path fromv tov′ impliesw εT. IfG is the comparability graph of a posetP, the path-closed sets ofG are the convex sets ofP. We characterize the convex hull of (the incidence vectors of) all path-closed sets ofG and its antiblocking polyhedron inR v , using lattice polyhedra, and give a minmax theorem on partitioning a given subset ofV into path-closed sets. We then derive good algorithms for the linear programs associated to the convex hull, solving the problem of finding a path-closed set of maximum weight sum, and prove another min-max result closely resembling Dilworth’s theorem.  相似文献   

11.
We consider the problem of finding the nearest point in a polyhedral cone C={xR n :D x≤0} to a given point bR n , where DR m×n . This problem can be formulated as a convex quadratic programming problem with special structure. We study the structure of this problem and its relationship with the nearest point problem in a pos cone through the concept of polar cones. We then use this relationship to design an efficient algorithm for solving the problem, and carry out computational experiments to evaluate its effectiveness. Our computational results show that our proposed algorithm is more efficient than other existing algorithms for solving this problem.  相似文献   

12.
A classical method for solving the variational inequality problem is the projection algorithm. We show that existing convergence results for this algorithm follow from one given by Gabay for a splitting algorithm for finding a zero of the sum of two maximal monotone operators. Moreover, we extend the projection algorithm to solveany monotone affine variational inequality problem. When applied to linear complementarity problems, we obtain a matrix splitting algorithm that is simple and, for linear/quadratic programs, massively parallelizable. Unlike existing matrix splitting algorithms, this algorithm converges under no additional assumption on the problem. When applied to generalized linear/quadratic programs, we obtain a decomposition method that, unlike existing decomposition methods, can simultaneously dualize the linear constraints and diagonalize the cost function. This method gives rise to highly parallelizable algorithms for solving a problem of deterministic control in discrete time and for computing the orthogonal projection onto the intersection of convex sets.This research is partially supported by the U.S. Army Research Office, contract DAAL03-86-K-0171 (Center for Intelligent Control Systems), and by the National Science Foundation under grant NSF-ECS-8519058.Thanks are due to Professor J.-S. Pang for his helpful comments.  相似文献   

13.
This paper presents a framework of iterative algorithms for the variational inequality problem over the Cartesian product of the intersections of the fixed point sets of nonexpansive mappings in real Hilbert spaces. Strong convergence theorems are established under a certain contraction assumption with respect to the weighted maximum norm. The proposed framework produces as a simplest example the hybrid steepest descent method, which has been developed for solving the monotone variational inequality problem over the intersection of the fixed point sets of nonexpansive mappings. An application to a generalized power control problem and numerical examples are demonstrated.  相似文献   

14.
We study the numerical solution procedure for two-dimensional Laplace’s equation subjecting to non-linear boundary conditions. Based on the potential theory, the problem can be converted into a nonlinear boundary integral equations. Mechanical quadrature methods are presented for solving the equations, which possess high accuracy order O(h 3) and low computing complexities. Moreover, the algorithms of the mechanical quadrature methods are simple without any integration computation. Harnessing the asymptotical compact theory and Stepleman theorem, an asymptotic expansion of the errors with odd powers is shown. Based on the asymptotic expansion, the h 3 −Richardson extrapolation algorithms are used and the accuracy order is improved to O(h 5). The efficiency of the algorithms is illustrated by numerical examples.  相似文献   

15.
Network design problems arise in a wide range of applied areas including telecommunications, computer networks, and transportation. In this paper, we address the following discrete capacitated multi-terminal network design problem. Given a connected digraph G = (V,A), a set of L potential facilities to be installed on each arc, and a set of K multi-terminal (non-simultaneous) commodity flow requirements, the problem is to find a set of facilities to install in order to route the K nonsimultaneous flows while minimizing the total fixed plus variable costs. We describe an exact procedure for solving this problem based on Benders decomposition. Our algorithm includes several features that significantly improve the efficiency of the basic approach. Computational results attest to the efficacy of the proposed algorithm, which can solve medium- to large-scale problems to optimality.  相似文献   

16.
The split delivery vehicle routing problem (SDVRP) relaxes routing restrictions forcing unique deliveries to customers and allows multiple vehicles to satisfy customer demand. Split deliveries are used to reduce total fleet cost to meet those customer demands. We provide a detailed survey of the SDVRP literature and define a new constructive algorithm for the SDVRP based on a novel concept called the route angle control measure. We extend this constructive approach to an iterative approach using adaptive memory concepts, and then add a variable neighborhood descent process. These three new approaches are compared to exact and heuristic approaches by solving the available SDVRP benchmark problem sets. Our approaches are found to compare favorably with existing approaches and we find 16 new best solutions for a recent 21 problem benchmark set.  相似文献   

17.
The main result of this paper is a (2 + )-approximation scheme for the minimum dominating set problem on circle graphs. We first present an O(n2) time 8-approximation algorithm for this problem and then extend it to an time (2 + )-approximation scheme for this problem. Here n and m are the number of vertices and the number of edges of the circle graph. We then present simple modifications to this algorithm that yield (3 + )-approximation schemes for the minimum connected and the minimum total dominating set problems on circle graphs. Keil (1993, Discrete Appl. Math.42, 51–63) shows that these problems are NP-complete for circle graphs and leaves open the problem of devising approximation algorithms for them. These are the first O(1)-approximation algorithms for domination problems on circle graphs.  相似文献   

18.
Dual extragradient algorithms extended to equilibrium problems   总被引:1,自引:0,他引:1  
In this paper we propose two iterative schemes for solving equilibrium problems which are called dual extragradient algorithms. In contrast with the primal extragradient methods in Quoc et al. (Optimization 57(6):749–776, 2008) which require to solve two general strongly convex programs at each iteration, the dual extragradient algorithms proposed in this paper only need to solve, at each iteration, one general strongly convex program, one projection problem and one subgradient calculation. Moreover, we provide the worst case complexity bounds of these algorithms, which have not been done in the primal extragradient methods yet. An application to Nash-Cournot equilibrium models of electricity markets is presented and implemented to examine the performance of the proposed algorithms.  相似文献   

19.
Combinatorial Sublinear-Time Fourier Algorithms   总被引:1,自引:0,他引:1  
We study the problem of estimating the best k term Fourier representation for a given frequency sparse signal (i.e., vector) A of length Nk. More explicitly, we investigate how to deterministically identify k of the largest magnitude frequencies of [^(A)]\hat{\mathbf{A}} , and estimate their coefficients, in polynomial(k,log N) time. Randomized sublinear-time algorithms which have a small (controllable) probability of failure for each processed signal exist for solving this problem (Gilbert et al. in ACM STOC, pp. 152–161, 2002; Proceedings of SPIE Wavelets XI, 2005). In this paper we develop the first known deterministic sublinear-time sparse Fourier Transform algorithm which is guaranteed to produce accurate results. As an added bonus, a simple relaxation of our deterministic Fourier result leads to a new Monte Carlo Fourier algorithm with similar runtime/sampling bounds to the current best randomized Fourier method (Gilbert et al. in Proceedings of SPIE Wavelets XI, 2005). Finally, the Fourier algorithm we develop here implies a simpler optimized version of the deterministic compressed sensing method previously developed in (Iwen in Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA’08), 2008).  相似文献   

20.
The paper investigates a capacitated vehicle routing problem with two objectives: (1) minimization of total travel cost and (2) minimization of the length of the longest route. We present algorithmic variants for the exact determination of the Pareto-optimal solutions of this bi-objective problem. Our approach is based on the adaptive ε-constraint method. For solving the resulting single-objective subproblems, we apply a branch-and-cut technique, using (among others) a novel implementation of Held-Karp-type bounds. Incumbent solutions are generated by means of a single-objective genetic algorithm and, alternatively, by the multi-objective NSGA-II algorithm. Experimental results for a benchmark of 54 test instances from the TSPLIB are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号