首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We give an overview of results on amorphic association schemes. We give the known constructions of such association schemes, and enumerate most such association schemes on up to 49 vertices. Special attention is paid to cyclotomic association schemes. We give several results on when a strongly regular decomposition of the complete graph is an amorphic association scheme. This includes a new proof of the result that a decomposition of the complete graph into three strongly regular graphs is an amorphic association scheme, and the new result that a strongly regular decomposition of the complete graph for which the union of any two relations is again strongly regular must be an amorphic association scheme.  相似文献   

2.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
Applying results from partial difference sets, quadratic forms, and recent results of Brouwer and Van Dam, we construct the first known amorphic association scheme with negative Latin square-type graphs and whose underlying set is a nonelementary abelian 2-group. We give a simple proof of a result of Hamilton that generalizes Brouwer's result. We use multiple distinct quadratic forms to construct amorphic association schemes with a large number of classes.  相似文献   

4.
A notion of a balanced automorphism of a group was introduced in [J. Sirǎn and M. Skoviera. Regular maps from Cayley graphs. I. Balanced Cayley maps. Algebraic graph theory (Leibnitz, 1989). Discrete Math. 109 (1992), no. 1–3, 265–276] in order to study regular Cayley maps over finite groups. One of the open questions formulated in the paper was this: which finite abelian groups admit a balanced automorphism? The presented paper answers this question.  相似文献   

5.
A graph is said to be one-regular if its automorphism group acts regularly on the set of its arcs. A construction of an infinite family of infinite one-regular graphs of valency 4 is given. These graphs are Cayley graphs of almost abelian groups and hence of polynomial growth.  相似文献   

6.
A partial difference set having parameters (n 2, r(n − 1), n + r 2 − 3r, r 2r) is called a Latin square type partial difference set, while a partial difference set having parameters (n 2, r(n + 1), − n + r 2 + 3r, r 2 + r) is called a negative Latin square type partial difference set. Nearly all known constructions of negative Latin square partial difference sets are in elementary abelian groups. In this paper, we develop three product theorems that construct negative Latin square type partial difference sets and Latin square type partial difference sets in direct products of abelian groups G and G′ when these groups have certain Latin square or negative Latin square type partial difference sets. Using these product theorems, we can construct negative Latin square type partial difference sets in groups of the form where the s i are nonnegative integers and s 0 + s 1 ≥ 1. Another significant corollary to these theorems are constructions of two infinite families of negative Latin square type partial difference sets in 3-groups of the form for nonnegative integers s i . Several constructions of Latin square type PDSs are also given in p-groups for all primes p. We will then briefly indicate how some of these results relate to amorphic association schemes. In particular, we construct amorphic association schemes with 4 classes using negative Latin square type graphs in many nonelementary abelian 2-groups; we also use negative Latin square type graphs whose underlying sets can be elementary abelian 3-groups or nonelementary abelian 3-groups to form 3-class amorphic association schemes.   相似文献   

7.
A graph is s‐regular if its automorphism group acts freely and transitively on the set of s‐arcs. An infinite family of cubic 1‐regular graphs was constructed in [10], as cyclic coverings of the three‐dimensional Hypercube. In this paper, we classify the s‐regular cyclic coverings of the complete bipartite graph K3,3 for each ≥ 1 whose fibre‐preserving automorphism subgroups act arc‐transitively. As a result, a new infinite family of cubic 1‐regular graphs is constructed. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 101–112, 2004  相似文献   

8.
Strongly Regular Decompositions of the Complete Graph   总被引:3,自引:0,他引:3  
We study several questions about amorphic association schemes and other strongly regular decompositions of the complete graph. We investigate how two commuting edge-disjoint strongly regular graphs interact. We show that any decomposition of the complete graph into three strongly regular graphs must be an amorphic association scheme. Likewise we show that any decomposition of the complete graph into strongly regular graphs of (negative) Latin square type is an amorphic association scheme. We study strongly regular decompositions of the complete graph consisting of four graphs, and find a primitive counterexample to A.V. Ivanov's conjecture which states that any association scheme consisting of strongly regular graphs only must be amorphic.  相似文献   

9.
A graph is vertex‐transitive if its automorphism group acts transitively on vertices of the graph. A vertex‐transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex‐transitive non‐Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p≡1 (mod 8) and the other two families exist if and only if p≡1 (mod 4). For each family there is a unique graph for a given order. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Using ideas from regular maps, we prove the existence of infinitely many non‐vertex‐transitive Cayley graphs obtained from Moufang loops. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

11.
We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups ?d. In this article we prove that for each d > 1 the set of Cayley graphs of ?d presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of ?d that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of ?d with crystallographic groups.  相似文献   

12.
We give two “lifting” constructions of strongly regular Cayley graphs. In the first construction we “lift” a cyclotomic strongly regular graph by using a subdifference set of the Singer difference sets. The second construction uses quadratic forms over finite fields and it is a common generalization of the construction of the affine polar graphs [7] and a construction of strongly regular Cayley graphs given in [15]. The two constructions are related in the following way: the second construction can be viewed as a recursive construction, and the strongly regular Cayley graphs obtained from the first construction can serve as starters for the second construction. We also obtain association schemes from the second construction.  相似文献   

13.
A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(Г, S). Xu, M. Y., Xu, J. (Southeast Asian Bulletin of Math., 25, 355-363 (2001)) classified one-regular Cayley graphs of valency at most 4 on finite abelian groups. Marusic, D., Pisanski, T. (Croat. Chemica Acta, 73, 969-981 (2000)) classified cubic one-regular Cayley graphs on a dihedral group, and all of such graphs turn out to be normal. In this paper, we classify the 4-valent one-regular normal Cayley graphs G on a dihedral group whose vertex stabilizers in Aut(G) are cyclic. A classification of the same kind of graphs of valency 6 is also discussed.  相似文献   

14.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

15.
We consider one‐factorizations of K2n possessing an automorphism group acting regularly (sharply transitively) on vertices. We present some upper bounds on the number of one‐factors which are fixed by the group; further information is obtained when equality holds in these bounds. The case where the group is dihedral is studied in some detail, with some non‐existence statements in case the number of fixed one‐factors is as large as possible. Constructions both for dihedral groups and for some classes of abelian groups are given. © 2002 John Wiley & Sons, Inc. J Combin Designs 10: 1–16, 2002  相似文献   

16.
关于交换群上的Cayley有向图的正规性   总被引:1,自引:0,他引:1  
Cayley有向图X=Cay(G,S)叫做正规的,如果G的右正则表示R(G)在X的全自同构群Aut(X)中正规,我们定出了交换群上的小度数的非正规的Cayley有向图, 并给出了一个猜想.应用这个结果,给出了pn(n≤2)个点上的度数不超过3的有向对称图的分类,这里p是一个奇素数.  相似文献   

17.
A graph is called edge-primitive if its automorphism group acts primitively on its edge set. In 1973, Weiss (1973) determined all edge-primitive graphs of valency three, and recently Guo et al. (2013,2015) classified edge-primitive graphs of valencies four and five. In this paper, we determine all edge-primitive Cayley graphs on abelian groups and dihedral groups.  相似文献   

18.
Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ? a?1. A Cayley graph Γ = Cay(A,S) is said to have an automorphism group as small as possible if Aut(Γ)=A?<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.  相似文献   

19.
Yifei Hao  Xing Gao  Yanfeng Luo 《代数通讯》2013,41(8):2874-2883
In this article, the Cayley graphs of Brandt semigroups are investigated. The basic structures and properties of this kind of Cayley graphs are given, and a necessary and sufficient condition is given for the components of Cayley graphs of Brandt semigroups to be strongly regular. As an application, the generalized Petersen graph and k-partite graph, which cannot be obtained from the Cayley graphs of groups, can be constructed as a component of the Cayley graphs of Brandt semigroups.  相似文献   

20.
For which groups G of even order 2n does a 1‐factorization of the complete graph K2n exist with the property of admitting G as a sharply vertex‐transitive automorphism group? The complete answer is still unknown. Using the definition of a starter in G introduced in 4 , we give a positive answer for new classes of groups; for example, the nilpotent groups with either an abelian Sylow 2‐subgroup or a non‐abelian Sylow 2‐subgroup which possesses a cyclic subgroup of index 2. Further considerations are given in case the automorphism group G fixes a 1‐factor. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号