首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the numerical dissipativity of nonlinear Volterra functional differential equations (VFDEs). We give some dissipativity results of Runge-Kutta methods when they are applied to VFDEs. These results provide unified theoretical foundation for the numerical dissipativity analysis of systems in ordinary differential equations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs), Volterra delay integro-differential equations (VDIDEs) and VFDEs of other type which appear in practice. Numerical examples are given to confirm our theoretical results.  相似文献   

2.
In this review, we present the recent work of the author in comparison with various related results obtained by other authors in literature. We first recall the stability, contractivity and asymptotic stability results of the true solution to nonlinear stiff Volterra functional differential equations (VFDEs), then a series of stability, contractivity, asymptotic stability and B-convergence results of Runge-Kutta methods for VFDEs is presented in detail. This work provides a unified theoretical foundation for the theoretical and numerical analysis of nonlinear stiff problems in delay differential equations (DDEs), integro-differential equations (IDEs), delayintegro-differential equations (DIDEs) and VFDEs of other type which appear in practice.   相似文献   

3.
In the present work, we present a numerical method for the computation of approximate solutions for large continuous-time algebraic Riccati equations. The proposed method is a method of projection onto a matrix Krylov subspace. We use a matrix Arnoldi process to construct an orthonormal basis. We give some theoretical results and numerical experiments for large problems.  相似文献   

4.
In this paper, we present an explicit one-step method for solving periodic initial value problems of second order ordinary differential equations. The method is P-stable, and of first algebraic order and high phase-lag order. To improve the algebraic order, we give a composition second order scheme with the proposed method and its adjoint. We report some numerical results to illustrate the efficiency of our methods.  相似文献   

5.
In this article, without computing exact gradient and Jacobian, we proposed a derivative-free Polak-Ribière-Polyak (PRP) method for solving nonlinear equations whose Jacobian is symmetric. This method is a generalization of the classical PRP method for unconstrained optimization problems. By utilizing the symmetric structure of the system sufficiently, we prove global convergence of the proposed method with some backtracking type line search under suitable assumptions. Moreover, we extend the proposed method to nonsmooth equations by adopting the smoothing technique. We also report some numerical results to show its efficiency.  相似文献   

6.
In this study, we present a numerical scheme for solving a class of fractional partial differential equations. First, we introduce psi -Laguerre polynomials like psi-shifted Chebyshev polynomials and employ these newly introduced polynomials for the solution of space-time fractional differential equations. In our approach, we project these polynomials to develop operational matrices of fractional integration. The use of these orthogonal polynomials converts the problem under consideration into a system of algebraic equations. The solution of this system provide us the desired results. The convergence of the proposed method is analyzed. Finally, some illustrative examples are included to observe the validity and applicability of the proposed method.  相似文献   

7.
In the present paper, we propose a preconditioned Newton–Block Arnoldi method for solving large continuous time algebraic Riccati equations. Such equations appear in control theory, model reduction, circuit simulation amongst other problems. At each step of the Newton process, we solve a large Lyapunov matrix equation with a low rank right hand side. These equations are solved by using the block Arnoldi process associated with a preconditioner based on the alternating direction implicit iteration method. We give some theoretical results and report numerical tests to show the effectiveness of the proposed approach.  相似文献   

8.
This paper investigates the nonlinear boundary value problem resulting from the exact reduction of the Navier-Stokes equations for unsteady magnetohydrodynamic boundary layer flow over the stretching/shrinking permeable sheet submerged in a moving fluid. To solve this equation, a numerical method is proposed based on a Laguerre functions with reproducing kernel Hilbert space method. Using the operational matrices of derivative, we reduced the problem to a set of algebraic equations. We also compare this work with some other numerical results and present a solution that proves to be highly accurate.  相似文献   

9.
This paper is concerned with the dissipativity of theoretical solutions to nonlinear Volterra functional differential equations (VFDEs). At first, we give some generalizations of Halanay's inequality which play an important role in study of dissipativity and stability of differential equations. Then, by applying the generalization of Halanay's inequality, the dissipativity results of VFDEs are obtained, which provides unified theoretical foundation for the dissipativity analysis of systems in ordinary differential equations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs), Volterra delay-integro-differential equations (VDIDEs) and VFDEs of other type which appear in practice.  相似文献   

10.
The paper explains the numerical parametrization method (PM), originally created for optimal control problems, for classical calculus of variation problems that arise in connection with singular implicit (IDEs) and differential-algebraic equations (DAEs) in frame of their regularization. The PM for IDEs is based on representation of the required solution as a spline with moving knots and on minimization of the discrepancy functional with respect to the spline parameters. Such splines are named variational splines. For DAEs only finite entering functions can be represented by splines, and the functional under minimization is the discrepancy of the algebraic subsystem. The first and the second derivatives of the functionals are calculated in two ways – for DAEs with the help of adjoint variables, and for IDE directly. The PM does not use the notion of differentiation index, and it is applicable to any singular equation having a solution.  相似文献   

11.
In our previous works, we proposed a reproducing kernel method for solving singular and nonsingular boundary value problems of integer order based on the reproducing kernel theory. In this letter, we shall expand the application of reproducing kernel theory to fractional differential equations and present an algorithm for solving nonlocal fractional boundary value problems. The results from numerical examples show that the present method is simple and effective.  相似文献   

12.
In this paper we propose a quantitative model for evaluation and selection of integrated development environments (IDEs) for Java enterprise applications. Our goal is to determine the extent to which major IDEs satisfy typical software developer requirements. Our evaluation model is based on the Logic Scoring of Preference (LSP) method for system evaluation. We present an overview of the LSP method, the structure of IDE evaluation criterion, and a sample evaluation and comparison of three competitive systems: IBM WebSphere Studio Application Developer, Borland JBuilder, and SUN ONE Studio. In this paper we also introduce rectangular diagrams, an efficient new notation of LSP criteria.  相似文献   

13.
In this paper, we present two partitioned quasi-Newton methods for solving partially separable nonlinear equations. When the Jacobian is not available, we propose a partitioned Broyden’s rank one method and show that the full step partitioned Broyden’s rank one method is locally and superlinearly convergent. By using a well-defined derivative-free line search, we globalize the method and establish its global and superlinear convergence. In the case where the Jacobian is available, we propose a partitioned adjoint Broyden method and show its global and superlinear convergence. We also present some preliminary numerical results. The results show that the two partitioned quasi-Newton methods are effective and competitive for solving large-scale partially separable nonlinear equations.  相似文献   

14.
In this paper, we introduce the absolute value equations associated with second order cones (SOCAVE in short), which is a generalization of the absolute value equations discussed recently in the literature. It is proved that the SOCAVE is equivalent to a class of second order cone linear complementarity problems (SOCLCP in short). In particular, we propose a generalized Newton method for solving the SOCAVE and show that the proposed method is globally linearly and locally quadratically convergent under suitable assumptions. We also report some preliminary numerical results of the proposed method for solving the SOCAVE and the SOCLCP, which show the efficiency of the proposed method.  相似文献   

15.
In this paper, we present a new algorithm to accelerate the Chambolle gradient projection method for total variation image restoration. The new proposed method considers an approximation of the Hessian based on the secant equation. Combined with the quasi‐Cauchy equations and diagonal updating, we can obtain a positive definite diagonal matrix. In the proposed minimization method model, we use the positive definite diagonal matrix instead of the constant time stepsize in Chambolle's method. The global convergence of the proposed scheme is proved. Some numerical results illustrate the efficiency of this method. Moreover, we also extend the quasi‐Newton diagonal updating method to solve nonlinear systems of monotone equations. Performance comparisons show that the proposed method is efficient. A practical application of the monotone equations is shown and tested on sparse signal reconstruction in compressed sensing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this paper is to present an efficient numerical procedure for solving the two-dimensional nonlinear Volterra integro-differential equations (2-DNVIDE) by two-dimensional differential transform method (2-DDTM). The technique that we used is the differential transform method, which is based on Taylor series expansion. Using the differential transform, 2-DNVIDE can be transformed to algebraic equations, and the resulting algebraic equations are called iterative equations. New theorems for the transformation of integrals and partial differential equations are introduced and proved. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

17.
In the present paper we analyse a numerical method for computing the solution of some boundary-value problems for the Emden-Fowler equations. The differential equations are discretized by a finite-difference method and we derive asymptotic expansions for the discretization error. Based on these asymptotic expansions, we use an extrapolation algorithm to accelerate the convergence of the numerical method.  相似文献   

18.
In this paper we introduce a process we have called “Gauss-Seidelization” for solving nonlinear equations. We have used this name because the process is inspired by the well-known Gauss-Seidel method to numerically solve a system of linear equations. Together with some convergence results, we present several numerical experiments in order to emphasize how the Gauss-Seidelization process influences on the dynamical behavior of an iterative method for solving nonlinear equations.  相似文献   

19.
Many implicit differential equations (IDEs) modelling practical problems can be partitioned into loosely coupled subsystems. In this paper the objective of the partitioning is to permit the numerical integration of one time step to be performed as the solution of a sequence of small subproblems. This reduces the computational complexity compared to solving one large system and permits efficient parallel execution under appropriate conditions. The subsystems are integrated using methods based on low order backward differentiation formulas.  相似文献   

20.
In this paper, we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by $H^{1}$-Galerkin mixed finite element methods. We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization, and backward Euler scheme for temporal discretization. Firstly, a priori error estimates and some superclose properties are derived. Secondly, a two-grid scheme is presented and its convergence is discussed. In the proposed two-grid scheme, the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy. Finally, a numerical experiment is implemented to verify theoretical results of the proposed scheme. The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice $h=H^2$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号