首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The present paper proves the existence and the asymptotic stability of a stationary solution to the initial boundary value problem for a quantum hydrodynamic model of semiconductors over a one-dimensional bounded domain. We also discuss on a singular limit from this model to a classical hydrodynamic model without quantum effects. Precisely, we prove that a solution for the quantum model converges to that for the hydrodynamic model as the Planck constant tends to zero. Here we adopt a non-linear boundary condition which means quantum effect vanishes on the boundary. In the previous researches, the existence and the asymptotic stability of a stationary solution are proved under the assumption that a doping profile is flat, which makes the stationary solution also flat. However, the typical doping profile in actual devices does not satisfy this assumption. Thus, we prove the above theorems without this flatness assumption. Firstly, the existence of the stationary solution is proved by the Leray-Schauder fixed-point theorem. Secondly, we show the asymptotic stability theorem by using an elementary energy method, where the equation for an energy form plays an essential role. Finally, the classical limit is considered by using the energy method again.  相似文献   

2.
This paper is concerned with the quasineutral limit of the bipolar quantum hydrodynamic model for semiconductors. It is rigorously proved that the strong solutions of the bipolar quantum hydrodynamic model converge to the strong solution of the so-called quantum hydrodynamic equations as the Debye length goes to zero. Moreover, we obtain the convergence of the strong solutions of bipolar quantum hydrodynamic model to the strong solution of the compressible Euler equations with damping if both the Debye length and the Planck constant go to zero simultaneously.  相似文献   

3.
The existence of global-in-time weak solutions to the one-dimensional viscous quantum hydrodynamic equations is proved. The model consists of the conservation laws for the particle density and particle current density, including quantum corrections from the Bohm potential and viscous stabilizations arising from quantum Fokker-Planck interaction terms in the Wigner equation. The model equations are coupled self-consistently to the Poisson equation for the electric potential and are supplemented with periodic boundary and initial conditions. When a diffusion term linearly proportional to the velocity is introduced in the momentum equation, the positivity of the particle density is proved. This term, which introduces a strong regularizing effect, may be viewed as a classical conservative friction term due to particle interactions with the background temperature. Without this regularizing viscous term, only the nonnegativity of the density can be shown. The existence proof relies on the Faedo-Galerkin method together with a priori estimates from the energy functional.  相似文献   

4.
《偏微分方程通讯》2013,38(3-4):669-691
ABSTRACT

The semi-classical and the inviscid limit in quantum trajectory models given by a one-dimensional steady-state hydrodynamic system for quantum fluids are rigorously performed. The model consists of the momentum equation for the particle density in a bounded domain, with prescribed current density, and the Poisson equation for the electrostatic potential. The momentum equation can be written as a dispersive third-order differential equation which may include viscous terms. It is shown that the semi-classical and inviscid limit commute for sufficiently small data (i.e. current density) corresponding to subsonic states, where the inviscid non-dispersive solution is regular. In addition, we show that these limits do not commute in general. The proofs are based on a reformulation of the problem as a singular second-order elliptic system and on elliptic and W 1,1 estimates.  相似文献   

5.
This paper deals with large-time behavior of solutions for a viscous bipolar quantum hydrodynamic model with third-order terms. By applying the entropy method, we prove exponential decays of solutions towards constant steady states for the one-dimensional and the multi-dimensional cases. The argument is based on a series of a priori estimates. As a byproduct, the decay of solutions for the viscous hydrodynamic model is obtained as well.  相似文献   

6.
In this paper, we pay attention to the time-decay rate of the viscous bipolar quantum hydrodynamic(QHD) models for semiconductors. By applying the entropy method, we prove that the solution of the viscous bipolar QHD models tends to the equilibrium state at an exponential decay rate for the multi-dimensional cases. The arguments is based on a series of a priori estimates.  相似文献   

7.
We discuss analytically the stationary viscous quantum hydrodynamic model including a barrier potential, which is a nonlinear system of partial differential equations of mixed order in the sense of Douglis–Nirenberg. Combining a reformulation by means of an adjusted Fermi level, a variational functional, and a fixed point problem, we prove the existence of a weak solution. There are no assumptions on the size of the given data or their variation. We also provide various estimates of the solution that are independent of the quantum parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
All possible continuum (hydrodynamic) models in the case of two-dimensional problems of supersonic and hypersonic flows around blunt bodies in the two-layer model (a viscous shock layer and shock-wave structure) over the whole range of Reynolds numbers, Re, from low values (free molecular and transitional flow conditions) up to high values (flow conditions with a thin leading shock wave, a boundary layer and an external inviscid flow in the shock layer) are obtained from the Navier-Stokes equations using an asymptotic analysis. In the case of low Reynolds numbers, the shock layer is considered but the structure of the shock wave is ignored. Together with the well-known models (a boundary layer, a viscous shock layer, a thin viscous shock layer, parabolized Navier-Stokes equations (the single-layer model) for high, moderate and low Re numbers, respectively), a new hydrodynamic model, which follows from the Navier-Stokes equations and reduces to the solution of the simplified (“local”) Stokes equations in a shock layer with vanishing inertial and pressure forces and boundary conditions on the unspecified free boundary (the shock wave) is found at Reynolds numbers, and a density ratio, k, up to and immediately after the leading shock wave, which tend to zero subject to the condition that (k/Re)1/2 → 0. Unlike in all the models which have been mentioned above, the solution of the problem of the flow around a body in this model gives the free molecular limit for the coefficients of friction, heat transfer and pressure. In particular, the Newtonian limit for the drag is thereby rigorously obtained from the Navier-Stokes equations. At the same time, the Knudsen number, which is governed by the thickness of the shock layer, which vanishes in this model, tends to zero, that is, the conditions for a continuum treatment are satisfied. The structure of the shock wave can be determined both using continuum as well as kinetic models after obtaining the solution in the viscous shock layer for the weak physicochemical processes in the shock wave structure itself. Otherwise, the problem of the shock wave structure and the equations of the viscous shock layer must be jointly solved. The equations for all the continuum models are written in Dorodnitsyn--Lees boundary layer variables, which enables one, prior to solving the problem, to obtain an approximate estimate of second-order effects in boundary-layer theory as a function of Re and the parameter k and to represent all the aerodynamic and thermal characteristic; in the form of a single dependence on Re over the whole range of its variation from zero to infinity.

An efficient numerical method of global iterations, previously developed for solving viscous shock-layer equations, can be used to solve problems of supersonic and hypersonic flows around the windward side of blunt bodies using a single hydrodynamic model of a viscous shock layer for all Re numbers, subject to the condition that the limit (k/Re)1/2 → 0 is satisfied in the case of small Re numbers. An aerodynamic and thermal calculation using different hydrodynamic models, corresponding to different ranges of variation Re (different types of flow) can thereby, in fact, be replaced by a single calculation using one model for the whole of the trajectory for the descent (entry) of space vehicles and natural cosmic bodies (meteoroids) into the atmosphere.  相似文献   


9.
This paper is concerned with the large time behavior of the solutions for 1D radiation hydrodynamic limit model without viscosity and its asymptotic stability of the viscous contact discontinuity wave under the smallness assumption of the strength of the contact wave and initial perturbations. The present pressure includes a fourth-order term about the absolute temperature from radiation effect which brings the main difficulty. Furthermore, the dissipative of the system is weaker for the lack of viscosity. All these make the problem more challenging. The prove is mainly based on the energy method, including normal and radial directions energy estimates.  相似文献   

10.
A one-dimensional quantum hydrodynamic model (or quantum Euler-Poisson system) for semiconductors with initial boundary conditions is considered for general pressure-density function. The existence and uniqueness of the classical solution of the corresponding steady-state quantum hydrodynamic equations is proved. Furthermore, the global existence of classical solution, when the initial datum is a perturbation of the steady-state solution, is obtained. This solution tends to the corresponding steady-state solution exponentially fast as the time tends to infinity.  相似文献   

11.
The long-time asymptotics of solutions of the viscous quantum hydrodynamic model in one space dimension is studied. This model consists of continuity equations for the particle density and the current density, coupled to the Poisson equation for the electrostatic potential. The equations are a dispersive and viscous regularization of the Euler equations. It is shown that the solutions converge exponentially fast to the (unique) thermal equilibrium state as the time tends to infinity. For the proof, we employ the entropy dissipation method, applied for the first time to a third-order differential equation.  相似文献   

12.
In this paper, we consider the existence and uniqueness of stationary solution to the bipolar quantum hydrodynamic model in one dimensional space with general non-constant doping profile. The existence of the stationary solution is proved by Leray-Schauder fixed-point theorem and a crucial truncation technique is used to derive the positive upper and lower bounds of the stationary solution. The uniqueness of the stationary solution is shown by a delicate energy estimate.  相似文献   

13.
The global in-time semiclassical and relaxation limits of the bipolar quantum hydrodynamic model for semiconductors are investigated in R3. We prove that the unique strong solution exists and converges globally in time to the strong solution of classical bipolar hydrodynamical equation in the process of semiclassical limit and that of the classical drift-diffusion system under the combined relaxation and semiclassical limits.  相似文献   

14.
In this paper, a bipolar transient quantum hydrodynamic model (BQHD) for charge density, current density and electric field is considered on the one-dimensional real line. This model takes the form of the classical Euler-Poisson system with additional dispersion caused by the quantum (Bohn) potential. We investigate the long-time behavior of the BQHD model and show the asymptotical self-similarity property of the global smooth solution. Namely, both of the charge densities tend to a nonlinear diffusion wave in large time, which is not a solution to the BQHD equation, but to the combined quasi-neutral, relaxation and semiclassical limiting model. Next, as a by-product, we can compare the large-time behavior of the bipolar quantum hydrodynamic models and of the corresponding classical bipolar hydrodynamic models. As far as we know, the nonlinear diffusion phenomena about the 1D BQHD is new.  相似文献   

15.
We study a relaxation limit of a solution to the initial-boundary value problem for a hydrodynamic model to a drift-diffusion model over a one-dimensional bounded domain. It is shown that the solution for the hydrodynamic model converges to that for the drift-diffusion model globally in time as a physical parameter, called a relaxation time, tends to zero. It is also shown that the solutions to the both models converge to the corresponding stationary solutions as time tends to infinity, respectively. Here, the initial data of electron density for the hydrodynamic model can be taken arbitrarily large in the suitable Sobolev space provided that the relaxation time is sufficiently small because the drift-diffusion model is a coupled system of a uniformly parabolic equation and the Poisson equation. Since the initial data for the hydrodynamic model is not necessarily in “momentum equilibrium”, an initial layer should occur. However, it is shown that the layer decays exponentially fast as a time variable tends to infinity and/or the relaxation time tends to zero. These results are proven by the decay estimates of solutions, which are derived through energy methods.  相似文献   

16.
The relaxation-time limit from the quantum hydrodynamic model to the quantum drift-diffusion equations in R3 is shown for solutions which are small perturbations of the steady state. The quantum hydrodynamic equations consist of the isentropic Euler equations for the particle density and current density including the quantum Bohm potential and a momentum relaxation term. The momentum equation is highly nonlinear and contains a dispersive term with third-order derivatives. The equations are self-consistently coupled to the Poisson equation for the electrostatic potential. The relaxation-time limit is performed both in the stationary and the transient model. The main assumptions are that the steady-state velocity is irrotational, that the variations of the doping profile and the velocity at infinity are sufficiently small and, in the transient case, that the initial data are sufficiently close to the steady state. As a by-product, the existence of global-in-time solutions to the quantum drift-diffusion model in R3 close to the steady-state is obtained.  相似文献   

17.
We consider a heat conduction model for solids. Nearest neighbour atoms interact as coupled oscillators exchanging velocities in such a way that the total energy is conserved. The system is considered under periodic boundary conditions. We will show that the system has a hydrodynamic limit given by the solution of the heat equation and we discuss some aspects of the model.  相似文献   

18.
In this paper, we discuss a bipolar transient quantum hydrodynamic model for charge density, current density, and electric field in the quarter plane. This model takes the form of a classical Euler–Poisson system with the additional dispersion terms caused by the quantum (Bohn) potential. We show global existence of smooth solutions for the initial boundary value problem when the initial data are near the nonlinear diffusive waves, which are different from the steady state. We also show the asymptotical behavior of the global smooth solution towards the nonlinear diffusive waves and obtain the algebraic decay rates. These results are proved by elaborate energy methods. Finally, using the Fourier analysis, we obtain the optimal convergence rates of the solutions towards the nonlinear diffusion waves. As far as we known, this is the first result about the initial boundary value problem of the one‐dimensional bipolar quantum hydrodynamic model in the quarter plane. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Currently available results on the solvability of the Navier-Stokes equations for incompressible non-Newtonian fluids are presented. The order of nonlinearity in the equations may be variable; the only requirement is that it must be a measurable function. Unsteady and steady equations are considered. A lot of attention is paid to the recovery of energy balance, whose violation is theoretically admissible, in particular, in the three-dimensional classical unsteady Navier-Stokes equation. When constructing a weak solution by a limit procedure, a measure arises as a limit of viscous energy densities. Generally speaking, the limit measure contains a nonnegative singular (with respect to the Lebesgue measure) component. It is this singular component that maintains energy balance. Sufficient conditions for the absence of a singular component are studied: in this case, the standard energy equality holds. In many respects, only the regular component of the limit measure is important: in the natural form it is equal to the product of the viscous stress tensor and the gradient of a solution; if this natural form is retained, then the problem is solvable. Conditions are found for the validity of the indicated fundamental representation of the absolutely continuous component of the limit measure.  相似文献   

20.
The blow-up in finite time for the solutions to the initial-boundary value problem associated to the multi-dimensional quantum hydrodynamic model in a bounded domain is proved. The model consists on conservation of mass equation and a momentum balance equation equivalent to a compressible Euler equations corrected by a dispersion term of the third order in the momentum balance. The proof is based on a priori estimates for the energy functional for a new observable constructed with an auxiliary function, and it is shown that, under suitable boundary conditions and assumptions on the initial data, the solution blows up after a finite time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号