首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Let k ≥ 5 be an odd integer and G = (V(G), E(G)) be a k-edge-connected graph. For ${X\subseteq V(G),e(X)}$ denotes the number of edges between X and V(G) ? X. We here prove that if ${\{s_i,t_i\}\subseteq X_i\subseteq V(G)(i=1,2),f}$ is an edge between s 1 and ${s_2,X_1\cap X_2=\emptyset,e(X_1)\le 2k-3,e(X_2)\le 2k-2}$ , and e(Y) ≥ k + 1 for each ${Y\subseteq V(G)}$ with ${Y\cap\{s_1,t_1,s_2,t_2\}=\{s_1,t_2\}}$ , then there exist paths P 1 and P 2 such that P i joins s i and ${t_i,V(P_i)\subseteq X_i}$ (i = 1, 2) and ${G-f-E(P_1\cup P_2)}$ is (k ? 2)-edge-connected, and in fact we give a generalization of this result.  相似文献   

2.
Thomassen conjectured that every 4-connected line graph is Hamiltonian. Chen and Lai (Combinatorics and Graph Theory, vol 95, World Scientific, Singapore, pp 53–69; Conjecture 8.6 of 1995) conjectured that every 3-edge connected and essentially 6-edge connected graph is collapsible. Denote D 3(G) the set of vertices of degree 3 of graph G. For ${e = uv \in E(G)}$ , define d(e) = d(u) + d(v) ? 2 the edge degree of e, and ${\xi(G) = \min\{d(e) : e \in E(G)\}}$ . Denote by λ m (G) the m-restricted edge-connectivity of G. In this paper, we prove that a 3-edge-connected graph with ${\xi(G)\geq7}$ , and ${\lambda^3(G)\geq7}$ is collapsible; a 3-edge-connected simple graph with ${\xi(G)\geq7}$ , and ${\lambda^3(G)\geq6}$ is collapsible; a 3-edge-connected graph with ${\xi(G)\geq6}$ , ${\lambda^2(G)\geq4}$ , and ${\lambda^3(G)\geq6}$ with at most 24 vertices of degree 3 is collapsible; a 3-edge-connected simple graph with ${\xi(G)\geq6}$ , and ${\lambda^3(G)\geq5}$ with at most 24 vertices of degree 3 is collapsible; a 3-edge-connected graph with ${\xi(G)\geq5}$ , and ${\lambda^2(G)\geq4}$ with at most 9 vertices of degree 3 is collapsible. As a corollary, we show that a 4-connected line graph L(G) with minimum degree at least 5 and ${|D_3(G)|\leq9}$ is Hamiltonian.  相似文献   

3.
Let G =  (V, E) be a finite loopless graph and let (A, +) be an abelian group with identity 0. Then an A-magic labeling of G is a function ${\phi}$ from E into A ? {0} such that for some ${a \in A, \sum_{e \in E(v)} \phi(e) = a}$ for every ${v \in V}$ , where E(v) is the set of edges incident to v. If ${\phi}$ exists such that a =  0, then G is zero-sum A-magic. Let zim(G) denote the subset of ${\mathbb{N}}$ (the positive integers) such that ${1 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}}$ -magic and ${k \geq 2 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}_k}$ -magic. We establish that if G is 3-regular, then ${zim(G) = \mathbb{N} - \{2\}}$ or ${\mathbb{N} - \{2,4\}.}$   相似文献   

4.
Let ${\mathcal{D}}$ be a nontrivial triplane, and G be a subgroup of the full automorphism group of ${\mathcal{D}}$ . In this paper we prove that if ${\mathcal{D}}$ is a triplane, ${G\leq Aut(\mathcal{D})}$ is flag-transitive, point-primitive and Soc(G) is an alternating group, then ${\mathcal{D}}$ is the projective space PG 2(3, 2), and ${G\cong A_7}$ with the point stabiliser ${G_x\cong PSL_3(2)}$ .  相似文献   

5.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

6.
The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenstein projective, injective and flat modules, respectively. The authors prove that the classes of all the Tc-Gorenstein projective or the Hc-Gorenstein flat modules are exactly those Gorenstein projective or flat modules which are in the Auslander class with respect to C, respectively, and the classes of all the Lc-Gorenstein 'injective modules are exactly those Gorenstein injective modules which are in the Bass class, so the authors get the relations between the Gorenstein projective, injective or flat modules and the C-Gorenstein projective, injective or flat modules. Moreover, the authors consider the Tc(R)-projective and Lc(R)-injective dimensions and Tc(R)-precovers and Lc(R)-preenvelopes. Fiually, the authors study the Hc-Gorenstein flat modules and extend the Foxby equivalences.  相似文献   

7.
Let T(G) be the Teichmüller space of a Fuchsian group G and T(G) be the pointed Teichmüller space of a corresponding pointed Fuchsian group G.We will discuss the existence of holomorphic sections of the projection from the space M(G) of Beltrami coefficients for G to T(G) and of that from T(G) to T(G) as well.We will also study the biholomorphic isomorphisms between two pointed Teichmüller spaces.  相似文献   

8.
The total bondage number b t (G) of a graph G with no isolated vertex is the cardinality of a smallest set of edges ${E^{\prime}\subseteq E(G)}$ for which (1) G?E′ has no isolated vertex, and (2) ${\gamma_{t}(G-E^{\prime})>\gamma_{t}(G)}$ . We improve some results on the total bondage number of a graph and give a constructive characterization of a certain class of trees achieving the upper bound on the total bondage number.  相似文献   

9.
The strong product ${G\boxtimes H}$ of graphs G = (V 1, E 1) and H = (V 2, E 2) is the graph with vertex set ${V(G \boxtimes H)=V_1\times V_2}$ , where two distinct vertices ${(x_1, x_2), (y_1, y_2)\in V_1\times V_2}$ are adjacent in ${G\boxtimes H}$ if and only if x i  = y i or ${x_i y_i\in E_i}$ for i = 1, 2. We introduce so called I-sets and L-sets in the strong product ${G\boxtimes H}$ and prove that every minimum separating set in ${G\boxtimes H}$ is either an I-set or an L-set in ${G\boxtimes H}$ . Some bounds and exact results for connectivity of strong products follow from this characterization. The result is then generalized to an arbitrary number of factors in the strong product.  相似文献   

10.
An additive functor $F \colon {\mathcal A}\to{\mathcal B}$ between preadditive categories $\mathcal A$ and $\mathcal B$ is said to be a local functor if, for every morphism $f\colon A\to A'$ in $\mathcal A$ , F(f) isomorphism in $\mathcal B$ implies f isomorphism in $\mathcal A$ . We show that there exist several pairs $(\mathcal I_1,\mathcal I_2)$ of ideals of $\mathcal A$ for which the canonical functor $\mathcal A\to\mathcal A/\mathcal I_1\times \mathcal A/\mathcal I_2$ is a local functor. In most of our examples, the category $\mathcal A$ is a full subcategory of the category Mod?-R of all right modules over a ring R. These pairs of ideals arise in a surprisingly natural way and enjoy several properties. Ideals are kernels of functors, and most of our examples of ideals are kernels of important and well studied functors. E.g., (1) the kernel Δ of the canonical functor P of Mod?-R into its spectral category Spec(Mod?-R), so that Δ is the ideal of all morphisms with an essential kernel; (2) the kernel Σ of the dual functor F of P, so that Σ is the ideal of all morphisms with a superfluous image; (3) the kernels Δ(1) and Σ(1) of the first derived functors P (1) and F (1) of P and F, respectively; (4) the kernels of suitable functors Hom and ? and their first derived functors ${\rm Ext}^1_R$ and ${\rm Tor}^R_1$ .  相似文献   

11.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

12.
Let R be a prime ring with center Z(R). For a fixed positive integer n, a permuting n-additive map ${\Delta : R^n \to R}$ is known to be permuting n-derivation if ${\Delta(x_1, x_2, \ldots, x_i x'_{i},\ldots, x_n) = \Delta(x_1, x_2, \ldots, x_i, \ldots, x_n)x'_i + x_i \Delta(x_1, x_2, \ldots, x'_i, \ldots, x_n)}$ holds for all ${x_i, x'_i \in R}$ . A mapping ${\delta : R \to R}$ defined by δ(x) = Δ(x, x, . . . ,x) for all ${x \in R}$ is said to be the trace of Δ. In the present paper, we have proved that a ring R is commutative if there exists a permuting n-additive map ${\Delta : R^n \to R}$ such that ${xy + \delta(xy) = yx + \delta(yx), xy- \delta(xy) = yx - \delta(yx), xy - yx = \delta(x) \pm \delta(y)}$ and ${xy + yx = \delta(x) \pm \delta(y)}$ holds for all ${x, y \in R}$ . Further, we have proved that if R is a prime ring with suitable torsion restriction then R is commutative if there exist non-zero permuting n-derivations Δ1 and Δ2 from ${R^n \to R}$ such that Δ1(δ 2(x), x, . . . ,x) =  0 for all ${x \in R,}$ where δ 2 is the trace of Δ2. Finally, it is shown that in a prime ring R of suitable torsion restriction, if ${\Delta_1, \Delta_2 : R^n \longrightarrow R}$ are non-zero permuting n-derivations with traces δ 1, δ 2, respectively, and ${B : R^n \longrightarrow R}$ is a permuting n-additive map with trace f such that δ 1 δ 2(x) =  f(x) holds for all ${x \in R}$ , then R is commutative.  相似文献   

13.
Let G be a connected graph. For ${x,y\in V(G)}$ with d(x, y) = 2, we define ${J(x,y)= \{u \in N(x)\cap N(y)\mid N[u] \subseteq N[x] \,{\cup}\,N[y] \}}$ and ${J'(x,y)= \{u \in N(x) \cap N(y)\,{\mid}\,{\rm if}\ v \in N(u){\setminus}(N[x] \,{\cup}\, N[y])\ {\rm then}\ N[x] \,{\cup}\, N[y]\,{\cup}\,N[u]{\setminus}\{x,y\}\subseteq N[v]\}}$ . A graph G is quasi-claw-free if ${J(x,y) \not= \emptyset}$ for each pair (x, y) of vertices at distance 2 in G. Broersma and Vumar (in Math Meth Oper Res. doi:10.1007/s00186-008-0260-7) introduced ${\mathcal{P}_{3}}$ -dominated graphs defined as ${J(x,y)\,{\cup}\, J'(x,y)\not= \emptyset}$ for each ${x,y \in V(G)}$ with d(x, y) = 2. This class properly contains that of quasi-claw-free graphs, and hence that of claw-free graphs. In this note, we prove that a 2-connected ${\mathcal{P}_3}$ -dominated graph is 1-tough, with two exceptions: K 2,3 and K 1,1,3, and prove that every even connected ${\mathcal{P}_3}$ -dominated graph ${G\ncong K_{1,3}}$ has a perfect matching. Moreover, we show that every even (2p + 1)-connected ${\mathcal{P}_3}$ -dominated graph is p-extendable. This result follows from a stronger result concerning factor-criticality of ${\mathcal{P}_3}$ -dominated graphs.  相似文献   

14.
We study the set ${\mathcal{X}}$ of split operators acting in the Hilbert space ${\mathcal{H}}$ : $$\mathcal{X}=\{T\in \mathcal{B}(\mathcal{H}): N(T)\cap R(T)=\{0\} \ {\rm and} \ N(T)+R(T)=\mathcal{H}\}.$$ Inside ${\mathcal{X}}$ , we consider the set ${\mathcal{Y}}$ : $$\mathcal{Y}=\{T\in\mathcal{X}: N(T)\perp R(T)\}.$$ Several characterizations of these sets are given. For instance ${T\in\mathcal{X}}$ if and only if there exists an oblique projection ${Q}$ whose range is N(T) such that T + Q is invertible, if and only if T posseses a commuting (necessarilly unique) pseudo-inverse S (i.e. TS = ST, TST = T and STS = S). Analogous characterizations are given for ${\mathcal{Y}}$ . Two natural maps are considered: $${\bf q}:\mathcal{X} \to \mathbb{Q}:=\{{\rm oblique \ projections \ in} \, \mathcal{H} \}, \ {\bf q}(T)=P_{R(T)//N(T)}$$ and $${\bf p}:\mathcal{Y} \to \mathbb{P}:=\{{\rm orthogonal \ projections \ in} \ \mathcal{H} \}, \ {\bf p}(T)=P_{R(T)}, $$ where ${P_{R(T)//N(T)}}$ denotes the projection onto R(T) with nullspace N(T), and P R(T) denotes the orthogonal projection onto R(T). These maps are in general non continuous, subsets of continuity are studied. For the map q these are: similarity orbits, and the subsets ${\mathcal{X}_{c_k}\subset \mathcal{X}}$ of operators with rank ${k<\infty}$ , and ${\mathcal{X}_{F_k}\subset\mathcal{X}}$ of Fredholm operators with nullity ${k<\infty}$ . For the map p there are analogous results. We show that the interior of ${\mathcal{X}}$ is ${\mathcal{X}_{F_0}\cup\mathcal{X}_{F_1}}$ , and that ${\mathcal{X}_{c_k}}$ and ${\mathcal{X}_{F_k}}$ are arc-wise connected differentiable manifolds.  相似文献   

15.
A group distance magic labeling or a ${\mathcal{G}}$ -distance magic labeling of a graph G =  (V, E) with ${|V | = n}$ is a bijection f from V to an Abelian group ${\mathcal{G}}$ of order n such that the weight ${w(x) = \sum_{y\in N_G(x)}f(y)}$ of every vertex ${x \in V}$ is equal to the same element ${\mu \in \mathcal{G}}$ , called the magic constant. In this paper we will show that if G is a graph of order n =  2 p (2k + 1) for some natural numbers p, k such that ${\deg(v)\equiv c \mod {2^{p+1}}}$ for some constant c for any ${v \in V(G)}$ , then there exists a ${\mathcal{G}}$ -distance magic labeling for any Abelian group ${\mathcal{G}}$ of order 4n for the composition G[C 4]. Moreover we prove that if ${\mathcal{G}}$ is an arbitrary Abelian group of order 4n such that ${\mathcal{G} \cong \mathbb{Z}_2 \times\mathbb{Z}_2 \times \mathcal{A}}$ for some Abelian group ${\mathcal{A}}$ of order n, then there exists a ${\mathcal{G}}$ -distance magic labeling for any graph G[C 4], where G is a graph of order n and n is an arbitrary natural number.  相似文献   

16.
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, ${rc(G)\leq r(r+2)}$ and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let D r  = {u}, then G has r?1 connected dominating sets ${ D^{r-1}, D^{r-2},\ldots, D^{1}}$ such that ${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$ and ${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$ , where b i is the number of bridges in E[D i , N(D i )] for ${1\leq i \leq r}$ . From the result, we can get that if ${b_i\leq 2i+1}$ for all ${1\leq i\leq r}$ , then ${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$ ; if b i  > 2i + 1 for all ${1\leq i\leq r}$ , then ${rc(G)= \sum_{i=1}^{r}b_i}$ , the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.  相似文献   

17.
Let R be a prime, locally matrix ring of characteristic not 2 and let Q ms (R) be the maximal symmetric ring of quotients of R. Suppose that ${\delta}\colon R\to Q_{ms}(R)$ is a Jordan τ-derivation, where τ is an anti-automorphism of R. Then there exists a?∈?Q ms (R) such that δ(x)?=?xa???(x) for all x?∈?R. Let X be a Banach space over the field ${\mathbb F}$ of real or complex numbers and let ${\mathcal B}(X)$ be the algebra of all bounded linear operators on X. We prove that $Q_{ms}({\mathcal B}(X))={\mathcal B}(X)$ , which provides the viewpoint of ring theory for some results concerning derivations on the algebra ${\mathcal B}(X)$ . In particular, all Jordan τ-derivations of ${\mathcal B}(X)$ are inner if $\text{dim}_{\mathbb F}X>1$ .  相似文献   

18.
Given a group A and a directed graph G, let F(G, A) denote the set of all maps ${f : E(G) \rightarrow A}$ . Fix an orientation of G and a list assignment ${L : V(G) \mapsto 2^A}$ . For an ${f \in F(G, A)}$ , G is (A, L, f)-colorable if there exists a map ${c:V(G) \mapsto \cup_{v \in V(G)}L(v)}$ such that ${c(v) \in L(v)}$ , ${\forall v \in V(G)}$ and ${c(x)-c(y)\neq f(xy)}$ for every edge e = xy directed from x to y. If for any ${f\in F(G,A)}$ , G has an (A, L, f)-coloring, then G is (A, L)-colorable. If G is (A, L)-colorable for any group A of order at least k and for any k-list assignment ${L:V(G) \rightarrow 2^A}$ , then G is k-group choosable. The group choice number, denoted by ${\chi_{gl}(G)}$ , is the minimum k such that G is k-group choosable. In this paper, we prove that every planar graph is 5-group choosable, and every planar graph with girth at least 5 is 3-group choosable. We also consider extensions of these results to graphs that do not have a K 5 or a K 3,3 as a minor, and discuss group choosability versions of Hadwiger’s and Woodall’s conjectures.  相似文献   

19.
Let R be a ring with center Z(R). An additive mapping ${F : R \longrightarrow R}$ is said to be a generalized derivation on R if there exists a derivation ${d : R \longrightarrow R}$ such that F(xy) = F(x)y + xd(y), for all ${x, y \in R}$ (the map d is called the derivation associated with F). Let R be a semiprime ring and U be a nonzero left ideal of R. In the present note we prove that if R admits a generalized derivation F, d is the derivation associated with F such that d(U) ≠ (0) then R contains some nonzero central ideal, if one of the following conditions holds: (1) R is 2-torsion free and ${F(xy) \in Z(R)}$ , for all ${x, y \in U}$ , unless F(U)U = UF(U) = Ud(U) = (0); (2) ${F(xy) \mp yx \in Z(R)}$ , for all ${x,y \in U}$ ; (3) ${F(xy) \mp [x,y] \in Z(R)}$ , for all ${x,y \in U}$ ; (4) F ≠ 0 and F([x,y]) = 0, for all ${x, y \in U}$ , unless Ud(U) = (0); (5) F ≠ 0 and ${F([x, y]) \in Z(R)}$ , for all ${x, y \in U}$ , unless either d(Z(R))U = (0) or Ud(U) = (0)n.  相似文献   

20.
We find a set of necessary and sufficient conditions under which the weight ${w: E \rightarrow \mathbb{R}^{+}}$ on the graph G = (V, E) can be extended to a pseudometric ${d : V \times V \rightarrow \mathbb{R}^{+}}$ . We describe the structure of graphs G for which the set ${\mathfrak{M}_{w}}$ of all such extensions contains a metric whenever w is strictly positive. Ordering ${\mathfrak{M}_{w}}$ by the pointwise order, we have found that the posets $({\mathfrak{M}_{w}, \leqslant)}$ contain the least elements ρ 0,w if and only if G is a complete k-partite graph with ${k \, \geqslant \, 2}$ . In this case the symmetric functions ${f : V \times V \rightarrow \mathbb{R}^{+}}$ , lying between ρ 0,w and the shortest-path pseudometric, belong to ${\mathfrak{M}_{w}}$ for every metrizable w if and only if the cardinality of all parts in the partition of V is at most two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号